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Inventory and Specification: Extended Fault Trees

1 Introduction

Assessing and ensuring Reliability, Availability, Maintainability and Safety (RAMS) is an important task
in the design of any safety critical system, in particular in the domain of aerospace systems and space-
craft. No matter how well designed a system is, it still has to deal with the presence of faults to some
extent. Faults in this context can be events such as equipment failures, wrong sensor readings, external
interferences and many more. To raise trust in handling system failures, reliability engineering tries
to embed Fault Detection, Isolation and Recovery (FDIR) concepts. These concepts are derived using
various tools and methodologies such as Fault Tree Analysis (FTA) [18], which is the main formalism
for failure modelling adopted in the MISSION project.
The purpose of this report, which is allocated to Work Package 2 (Reliability and Resilience), is to
assemble a survey of Fault Tree extensions with repair and maintenance aspects, to investigate issues
concerning semantics, and to define a modular formal semantics onto an appropriate automata model.
It aims to serve as the basis for the integration in the tooling environment to be developed in Work
Package 4 (Integration and Validation).
This document is organised as follows. Section 2 starts with an overview of (Static) Fault Trees and their
extension with dynamic elements as well as repair and maintenance aspects. Our proposed semantic
model, Generalised Stochastic Petri Nets (GSPNs), is introduced in Section 3. In Section 4 we develop
our compositional GSPN semantics of Dynamic Fault Trees and then extend it by repair operations in
Section 5. Finally, the report concludes in Section 6.

2 Extended Fault Trees: An Overview

Fault Tree Analysis (FTA) is a methodology commonly used in industry for performing state-of-the-art
failure analysis [25]. The resulting Fault Trees describe how faults propagate through components and
subsystems of a system and eventually lead to a top-level system failure. They enable various forms of
both qualitative and quantitative analyses. The former aim to identify fault combinations that lead to
system failure. The latter are based on assigning failure probabilities to components, which allows for
the computation of important RAMS metrics such as overall reliability or mean time to failure (MTTF).
In the following we provide a survey of related work on (Static) Fault Trees and their extension with
dynamic elements as well as repair and maintenance aspects, putting the emphasis on approaches with
a solid formal foundation.

2.1 Static Fault Trees

The most basic case of a Fault Tree is known as a Static Fault Tree (SFT), which models how failures of
(sub-)components propagate through the system and eventually lead to a system failure. The creation
of a Fault Tree follows a top-down approach. It starts with the top-level event (TLE), which represents
the failure of the complete system. The system failure is subdivided into failures of sub-components,
which can then be further subdivided. This hierarchical approach is continued down to the desired level
of detail. The leaves in the resulting tree represent components which are not further decomposed, so-
called basic events (BEs). A basic event fails according to its associated probability distribution, if given.
If a BE fails, the failure is propagated upwards through the Fault Tree. The intermediate nodes – so-
called gates – fail themselves if their failure condition is satisfied. For instance, gates of type AND fail
if all of their sub-components have failed whereas gates of type OR fail if at least one of their sub-
components has failed. The semantics of Static Fault Trees is therefore clearly defined as a Boolean
function over the BEs encoding the system’s failure conditions. For a detailed overview of different
analysis techniques for Fault Trees, we refer to [25].
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2.2 Dynamic Fault Trees

While Static Fault Trees are widely used in practice, they are not equipped to faithfully model more
complex – dynamic – behaviour as it is usually present in modern systems. For this reason, they have
been extended to Dynamic Fault Trees (DFTs), which incorporate temporal aspects and new features
to analyse both spare management and temporal as well as functional dependencies [12]. More con-
cretely, DFTs introduce several new types of gates such as

• priority-AND (PAND) and sequence enforcer (SEQ) for order-dependent failures,

• SPARE for spare management and activation, and

• FDEP for functional dependency.

These gates increase the expressiveness and allow for more faithful modelling compared to the basic
(static) formalism. However, this advantage comes at the price of raising semantic problems – the
dynamic nature of the additional gates makes a clear definition of the semantics more complicated
[11]. While each dynamic gate on its own seems to have a concise definition, the interplay between
different gates leads to intricate issues which are often overlooked and not properly defined in the
literature [19]. An example is the unclear behaviour of a PAND-gate if multiple sub-components fail
at the same time. Another example are spare races, which occur when several failed components
simultaneously compete for a common set of spares.
These semantic issues are addressed in the work presented in [20, 26], which aims to capture and
compare the existing DFT semantics. To this end, it introduces a thorough semantic of DFTs in terms
of Generalised Stochastic Petri Nets (GSPNs) [1]. This is achieved in a modular way by defining the be-
haviour of each element in a given DFT independently in terms of a GSPN. Composing the individual
GSPNs then yields a complete GSPN representing the behaviour of the overall DFT. Since this consti-
tutes a very systematic and flexible approach, we also choose it as the basis for our semantic model
(cf. Section 3). As we will see in Section 5, GSPNs are also appropriate for giving meaning to Fault
Trees extended by repair and maintenance aspects.

2.3 Fault Trees with Repair

Another important aspect of (Dynamic) Fault Trees with practical relevance is repairability. In standard
Fault Trees, fault events may only occur once and cannot be undone, i.e., faults are considered to be
persistent. This makes it challenging to model transient failures and recovery by repair or replacement.
Repairable Fault Trees (RFTs) aim to fill this gap. For a survey giving further insight into state-of-the-art
techniques and model extensions for Fault Trees, also covering Repairable Fault Trees, we refer the
interested reader to [25]. Most of our citations and explanations on RFT approaches are taken from
this source.

Single-Component Repairs. The simplest way of incorporating repair aspects into DFTs is to equip
BEs with additional repair distributions, similar to failure distributions. Repair times are often expo-
nentially distributed and can thus be specified using a repair rate. In [8], Boudali et al. describe an
approach to analyse DFTs with repair rates using Input/Output Interactive Markov Chains (I/O-IMCs).
First, DFTs are converted into I/O-IMCs, which are then modified in order to model repairs of single
components. However, details on the semantics for repairable elements are only given for AND gates
and BEs that can only fail if they are activated. The repair delay is modelled by a Markovian transition
with a rate corresponding to the repair rate. The impact of a repair operation on an AND gate is ex-
plained by means of a system composed of an AND gate with two BEs. However, sometimes this simple
model that only considers repairs of single components is not sufficient.
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Another semantic model is employed by Mertens in [21], who presents compositional semantics for
RFTs in terms of GSPNs by extending the framework proposed in [20]. Details will be considered in
Section 5.

Multi-Component Repairs. In more advanced approaches, so-called repair blocks or repair boxes
(RBs) are introduced which represent a repair involving multiple components. RBs can be linked to
any element of a Fault Tree and are activated if the corresponding event occurs, i.e., if the element
fails.
Bobbio et al. [7] introduce repair boxes which can be connected to a gate, and which begin repairs on
the BEs of the sub-tree rooted at that gate when the gate fails. Codetta-Raiteri et al. [10] extend these
repair boxes to allow different repair policies to be used in the model. In this formalism, each BE has
a failure rate, which is the parameter of an exponential distribution that determines the time until the
component fails. Each RB is connected to one or more BEs to repair, and one incoming BE or gate. When
the incoming event occurs, the repair box is activated and initiates repairs on the outgoing components
according to the repair policy. Every component also has a repair rate, which is the parameter of another
exponential distribution modelling the time required to repair the component. Repair policies can be
very simple, even equivalent to the simple repair rates model, or more complex, for example restricting
the number of components that can be repaired simultaneously. The major advantage of this approach
is that it allows modelling of more realistic systems, and analysis of what repair strategies are best. A
disadvantage is that the resulting RFTs cannot be quantitatively analysed using combinatorial methods.
Flammini et al. [14] add the possibility of giving priority to the repair of certain components, based
on the repair rate, failure rate, or level of redundancy of the components. Other priority schemes can
also be implemented within this system.
A different extension is provided by Beccuti et al. [4, 6] by adding non-determinism to the repair
policies. This models cases where, for example, a mechanic individually decides which component to
repair first. Conversion to Markov Decision Processes (MDPs) allows to automatically derive optimal
repair policies from the Fault Tree when costs of unavailability, failures, and repairs are provided. A
parametric version [5] of the formalism allows for more efficient modelling and analysis if the Fault
Tree contains redundant sub-trees that differ only in the parameter values of the BEs.
In [15], Franceschinis et al. introduce RFTs which extend the Static Fault Tree model by adding nodes
that correspond to RBs. They can be connected to elements in the RFT and are activated if the corre-
sponding element fails, and can implement different repair policies. One repair strategy, the complete
repair strategy, is explained in more detail. It includes the repair of the failed element as well as the
repair of all its causes, i.e., the sub-components. Temporal behaviour is modelled by equipping the
BEs with repair distributions that specify the time needed to eliminate the failure and by varying the
number of timed transitions that represent a repair strategy to model parallel or sequential timing. As
the underlying semantic model, RFTs are transformed into GSPNs by first generating the Fault Tree
and then adding the repair blocks.
In [9], Codetta-Raiteri describes how several extensions for Fault Trees, including dynamic gates and
repair boxes, can be integrated into Fault Trees. In this formalism, an RB is connected to a set of BEs
and to a trigger whose failure leads to the activation of the RB. The RB solely eliminates the failures
of the BEs it is directly assigned to. However, the repair of these BEs may lead to an indirect repair
of other elements. Regarding the definition of dynamic gates with repairs, priority-AND, sequence-
enforcer, and SPARE gates are considered. Repairs of BEs triggering functional dependencies are not
supported. Later work by Monti et al. [22] introduces a compositional semantics for this model in
terms of Input/Output Stochastic Automata (IOSA), which allows for the modelling of events occurring
according to general continuous distributions.

Maintenance. While we only consider repair operations, a distinction between preventive and correc-
tive maintenance is drawn by Guck et al. in [16, 24]. The former describes the process of inspecting
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a component in order to put it in a better condition, whereas the latter refers to repairing it. In order
to reflect these variants, additional types of BEs are introduced, namely those that are maintainable,
repairable, or both. Moreover inspection modules, which determine the interval in which the health
status of BEs is inspected, and repair units, which implement the corrective maintenance and which
correspond to the RBs described before, are added. Altogether, this yields so-called Fault Maintenance
Trees, which enable maintenance strategies to be directly defined on the level of the Fault Tree.

3 Generalised Stochastic Petri Nets

Petri Nets [23] are commonly used to model concurrent systems. Their extension in the form of Gen-
eralised Stochastic Petri Nets (GSPNs) was first introduced in [2]. This section gives a brief introduction
to GSPNs as formalised in [13].
GSPNs are Petri nets with both timed and immediate transitions. In our setting, the former are used
to model the occurrence of basic events in DFTs, while the latter represent the instantaneous failure
propagation within DFT gates. Inhibitor arcs prevent transitions from firing repeatedly. We use them
to model that components do not fail repeatedly. Transition weights allow to resolve possible non-
determinism. Priorities will be (as explained later) the key to distinguish the different DFT semantics;
they control the order of transition firings for, e.g., the failure propagation in DFTs. Finally, partitions
of immediate transitions allow for a flexible treatment of non-determinism.

Definition 1 (GSPN). A Generalised Stochastic Petri Net (GSPN) extends a Petri net and is given as a
10-tuple G = (P, T, I,O,H,m0,W,ΠDom,Π,D) where

• P is a finite set of places;

• T = Ti ∪ Tt is a finite set of transitions, where Ti is the set of immediate transitions and Tt is the set
of timed transitions;

• I,O,H : T → M respectively define the input places, output places and inhibition places of the
transitions whereM = P → N denotes the set of markings. For all places p ∈ P , we letH(t)(p) = ∞
if p is not an inhibitor place of t;

• m0 ∈ M is the initial marking;

• W : T → R>0 defines the weights of the transitions;

• ΠDom is the priority domain;

• Π: T → ΠDom defines the transition priorities; and

• D ⊆ 2Ti is a partition of the immediate transitions.

Following [2], we assume that timed transition have priority zero, i.e., Π(t) = 0 for all t ∈ Tt, whereas
immediate transitions have a non-zero priority, i.e., Π(t) > 0 for all t ∈ Ti.
In the graphical representation of a GSPN, we use circles to depict places, and solid and empty bars
to depict immediate and timed transitions, respectively. Tokens in a place – constituting a marking –
are indicated by bullets in the corresponding circle. Input arcs are displayed with an arrow from the
place to the transition whereas output arcs are displayed with an arrow from the transition to the place.
Inhibitor arcs are depicted by an arc from the place to the transition with a small circle as arc-head.
Arc-multiplicities greater than one are indicated by a small number near the arc. We display transition
weights with the prefix w and transition priorities with the prefix @. We often omit the weight for a
transition t ifW (t) = 1. The partitioning is not depicted but given separately.
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(a) GSPN with enabled transition t2 (b) GSPN after firing of t2

Figure 1: GSPN example

Example 2. Consider the GSPN depicted in Figure 1a. The set of places corresponds to {P1, P2, P3}, and
the set of transitions equals {t1, t2, t3, t4}, where t1 is the only timed transition.
Since no arc is directed to t1, we have I(t1)(p) = 0 for all places p. The same applies to the inhibition
function. The directed arc from t1 to P1 means O(t1)(P1) = 1. For all other places p ̸= P1, we have
O(t1)(p) = 0. Note that the arc between t2 and P2 is both an output arc from t2 to P2 (as indicated by
the arrowhead) and an inhibitor arc from P2 to t2 (as indicated by the circle). The cardinality above the
arc from place P1 to transition t2 induces that I(t2)(P2) = 2. The remaining cases work similarly and are
therefore omitted.
We have Π(t) = 1 for all immediate transitions t. The priority of t1 is omitted, but we know by definition
that Π(t1) = 0. Furthermore, the depicted weights for transitions t3 and t4 imply that W (t3) = 0.3 and
W (t4) = 0.7.

A transition has concession if the tokens in each place satisfy the conditions imposed by the input-,
output- and inhibition arcs. From all transitions with concessions, those with highest priority are en-
abled. Firing an enabled transition consumes tokens in the input places and places tokens in the output
places.

Definition 3 (Concession, enabledness, firing). Let G be a GSPN as introduced in Definition 1.

• The set conc(m) of transitions with concession in marking m ∈ M is defined by

conc(m) = {t ∈ T | ∀p ∈ P.m(p) ≥ I(t)(p) ∧m(p) < H(t)(p)} .

• The set enabled(m) of enabled transitions in marking m ∈ M is given by

enabled(m) = conc(m) ∩
{
t ∈ T

∣∣∣∣ Π(t) = max
t′∈conc(m)

Π(t′)

}
.

• The effect of firing an enabled transition t ∈ enabled(m) on markingm ∈ M is the markingm′ ∈ M
such that

∀p ∈ P.m′(p) = m(p)− I(t)(p) +O(t)(p).

If multiple transitions are enabled at the same time, there is a conflict between these transitions. A
conflict is resolved in two steps. First, a non-deterministic choice is made over all partitions containing
an enabled transition. Second, a probabilistic choice is made over all enabled transitions within the
selected partition. The probability of selecting a transition is given by the weight of each enabled
transition.
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Example 4. Consider the GSPN in Figure 1a withm ∈ M being the marking corresponding to the depicted
number of tokens, i.e., m(P1) = 3 and m(P2) = m(P3) = 0. We have conc(m) = {t1, t2}. We assume that
the immediate transitions all have the same priority. Since immediate transitions have a higher priority
than timed transitions, only t2 is enabled, i.e., enabled(m) = {t2}.
Firing t2 leads to the new marking m′ as shown in Figure 1b. Now we have conc(m′) = {t3, t4} and both
transitions t3 and t4 are enabled because they have the same priority. Thus, t3 and t4 are in conflict. Note
that the firing of t3 would lead to a different marking than the firing of t4. Also note that t2 is not enabled,
for two reasons: The input place P1 does not contain the required two (or more) tokens, and moreover t2
is blocked by the incoming inhibitor arc from P2.

Tool support for GSPNs is available through for example the GreatSPN Editor1[3] or Storm2 [17]. The
latter is a probabilistic model checker developed at RWTH Aachen University that handles a variety
of input languages and modelling formalisms. In particular, it accepts GSPNs given in either of two
formats: the Petri Net Markup Language (PNML)3, and the pnpro XML format, which is used by the
GreatSPN Editor. Later we will see that Storm also provides support for (Repairable) Fault Trees
through a translation from (R)FTs to GSPNs.

4 Formal Semantics of Dynamic Fault Trees

The goal of this section is to formally introduce Dynamic Fault Trees (DFTs), and to define their se-
mantics in terms of Generalised Stochastic Petri Nets (GSPNs). Our approach is based on the work
described in [20, 26], which unifies various DFT semantics.

4.1 Dynamic Fault Trees

Fault Trees (FTs) are directed acyclic graphs with typed nodes. Nodes without successors (or: children)
represent basic events (BEs); all other nodes denote gates. We start with the formal definition of DFTs.

Definition 5 (DFT). A Dynamic Fault Tree (DFT) is a tuple F = (V, σ, t , top,FRa ,FRp) where

• V is a finite set of nodes;

• σ : V → V ∗ yields the ordered sequence of children for each node;

• t : V → {BE,AND,OR, . . .} defines the node type. We use BE = {v ∈ V | t(v) = BE} to denote the
set of all BEs;

• top ∈ V is the unique top-level event (TLE); and

• FRa ,FRp : BE → R>0 associate an active and passive failure rate, respectively, to each BE.

We require that DFTs are well-formed, that is, (1) the directed graph induced by V and σ is acyclic, and
(2) the leaves are exactly the BEs.
For node v ∈ V , we also write v ∈ F . If t(v) = K for some K ∈ {BE,AND, . . .}, we write v ∈ FK (and
thus BE = FBE). We denote the i-th child of v by σ(v)i and use vi as shorthand.
BEs represent system components that can fail. Initially, a BE is operational; it fails according to a
negative exponential distribution P (t) = 1 − e−λt with rate λ given by FRa (or FRp). A gate fails
instantaneously, that is, without any delay when its failure condition over its children is fulfilled. The
failure behaviour of a fault tree can be explained by traces of failures.

1https://github.com/greatspn/SOURCES
2https://www.stormchecker.org
3https://www.pnml.org
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Figure 2: Basic event and static gates
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Figure 3: Dynamic gates

Definition 6 (Failure traces). Let F be a DFT. The failure of a DFT node v is denoted by event fv. If v is
a BE, the failure is additionally highlighted by fv. Event ⊘v indicates that the status of v did not change,
event �v indicates that the failure of v is not valid, event clsv indicates that SPARE gate s claimed its child v,
and event ↑v indicates the activation of node v. A DFT trace is a sequence of events τ = e1e2 . . ..

The key gates for Static Fault Trees (SFTs) are typed AND and OR, shown in Figure 2. These gates
fail if all of their children or at least one of them have failed, respectively. Both are instances of the
VOTk/n gate, which is depicted in Figure 2d. It has n children and fails if at least k of those have failed.
Typically, FTs express for which combinations of BE failures, the specifically marked top-level event fails.

Example 7 (SFT). The SFT in Figure 4a fails if bothA andB have failed, i.e., τ1 = fAfBfT and τ2 = fBfAfT
are both failure traces. Note that events fA and fB indicate that both BEs fail on their own. In contrast, fT
indicates that the AND gate T failed due to the failure of its children.

SFTs do not have an internal state – the failure condition is independent of the history. Therefore, SFTs
lack expressiveness [19, 25]. Several extensions commonly referred to as Dynamic Fault Trees (DFTs)
have been proposed to mitigate this problem [12]. The extensions introduce new node types, shown
in Figure 3; we categorise them as priority gates, dependencies, restrictors, and spare gates.

Priority Gates. These gates extend static gates by imposing a condition on the ordering of failing
children and thus allow for order-dependent failure propagation. A priority-AND (PAND) fails if all
its children have failed in order from left to right. Figure 4b depicts a PAND with two children A and
B. It fails if A fails before B, i.e., fAfBfT . The priority-OR (POR) only fails if the leftmost child fails
before any of its siblings do. If a gate cannot fail any more, e.g., when B fails before A in Figure 4b,
it is fail-safe. The corresponding trace is fBfA⊘T where event ⊘T indicates that the status of T did not
change and in particular did not fail. For simplicity, we only consider the inclusive variants of both gates,
i.e., those that admit simultaneous failures (sometimes denoted by PAND≤ and POR≤, respectively).
Excluding simultaneous failures is possible as well [11, 20].

Dependencies. Dependencies do not propagate a failure to their parents. Instead, when their trigger
(first child) fails, this failure is forwarded to all dependent events (remaining children) which are then
rendered failed as well. For example, Figure 4c shows an FDEP gate where the failure of trigger A
causes a failure of BE B (provided B has not failed before). The corresponding trace is fAfBfT . Note
that we use fB instead of fB to highlight thatB did not fail on its own but was triggered throughA. As a
generalisation, it is possible to introduce probabilistic dependencies (PDEP), which are equipped with
a parameter p. PDEPs forward the failure only with probability p; with probability 1−p the dependent
events stay unchanged. Details are discussed in [11, 20].
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(d) SEQ
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(e) SPARE (f) Spare modules

Figure 4: Simple examples of DFTs

Restrictors. Restrictors limit the possible failures. Sequence enforcers (SEQ) require that their chil-
dren only fail from left to right. This differs from priority gates which do not prevent certain orderings,
but only propagate if an ordering condition is met. For instance, the AND gate in Figure 4d fails if
A and B have failed (in any order) but the SEQ enforces that A must fail prior to B. In contrast to
Figure 4b, T is never fail-safe. Thus, fAfBfT is a trace for both the SEQ and the PAND. However, while
fBfA⊘T is a trace for the PAND, the trace for the SEQ is fBfA�S . Here, event �S indicates that the
order of the sequence enforcer S is violated and the trace is therefore invalid. Another restrictor is the
MUTEX gate, which ensures that at most one of its children fails. We will not further consider it here
as it can be simulated by SEQ, cf. [19].

Spare Gates. Consider the DFT in Figure 4e modelling (part of) a motor bike with a spare wheel. A
bike needs two wheels to be operational. Either wheelW1 andW2 can be replaced by the spare wheel
WS , but not both. The spare wheel is also less likely to fail until it is in use. Assume the front wheel
W1 fails. Then the spare wheelWS is available and can be used (also called claiming). AsWS is in use
now, it is also more likely to fail. If any other wheel fails next (e.g., W2), no spare wheel is available
any more, and the parent SPARE fails.
SPARE gates involve two mechanisms: claiming and activation. Claiming works as follows. SPAREs use
one of their children. If this child fails, the SPARE tries to claim another child (from left to right). Only
operational children that have not been claimed by another SPARE can be claimed. If claiming fails –
because all spare components are either failed or already used by other SPARE gates – the SPARE fails.
As example, consider the following trace

τ = clFW
W1

clBW
W2

fW1cl
FW
WS

fW2fBW fT .

Initially, both SPAREs FW and BW claim their first child. This is represented by events such as clFW
W1

which indicates that SPARE FW claimed child W1. After the failure of the claimed child W1, SPARE
FW needs to claim a new child. ChildWS is available, because it is both operational and still unused.
FW therefore claims WS , represented by event clFW

WS
. When W2 fails, SPARE BW cannot claim any

other child anymore and it becomes failed, i.e., event fBW happens.
Let us now consider activation. SPAREs may have independent, i.e., disjoint, sub-DFTs as children. This
can also include nested SPAREs, i.e., SPAREs having SPAREs as children. A spare module is a sub-tree
with one of the SPARE’s children as root node. This child is called the module representative. Figure 4f
gives an example of spare modules (depicted by boxes) and their representatives (shaded nodes). Here,
a spare module contains all nodes which have a path to the spare representative without going through
an intermediate SPARE. Thus, every leaf of a spare module is either a BE or again a SPARE. Nodes
outside of spare modules are always active. For each active SPARE and used child v, the nodes in v’s
spare module are activated. Active BEs fail with their active failure rate (given by FRa); all other BEs
fail with their passive failure rate (given by FRp). We extend the trace τ from before to also include
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Figure 5: Compositional semantics of DFTs using GSPNs [20]

activation:
τ ′ = ↑T ↑FW ↑BW clFW

W1
↑W1 clBW

W2
↑W2 fW1 cl

FW
WS

↑WS
fW2 fBW fT .

Initially, gates T , FW and BW are active, because they are not part of a spare module. Children
are activated through claiming. For example, event clFW

W1
activates W1. After the initial claiming and

activation, all elements except for the spare childWS are active. WS becomes active when it is claimed.
For presentation purposes, we usually omit the activation events in the following as they can be inferred
from the claiming events.
For presentation purposes we restrict DFTs to conventional DFTs in the remainder of this document.

Definition 8 (Conventional DFT). A DFT is conventional if

1. Spare modules are only shared via their (unique) representative. In particular, spare modules are
disjoint.

2. All children of a SEQ are BEs.

3. All children of an FDEP are BEs.

Restriction 1 ensures that spare modules can be seen as a single entity with respect to claiming and
activation. Lifting this requirement to allow for non-disjoint spare modules raises new semantic is-
sues [19]. Restriction 2 ensures that the failing BEs are immediately deducible. Restriction 3 simplifies
the presentation. Allowing gates as trigger event leads to additional semantic questions, which will be
addressed in Section 5.

4.2 Generic Translation of DFTs to GSPNs

This section describes the general idea for defining the semantics of a DFT F by a GSPN TF based on
the elaboration in [20]. We only provide an intuitive idea of the individual steps in this section since
we will describe the detailed semantics for repairable DFTs in Section 5.
A high-level overview of the translation process is depicted in Figure 5. It shows a DFT on the left, which
is translated into the GSPN on the right. The general idea is that each DFT element is translated to a
GSPN according to some template as indicated by the intermediate step depicted in Figure 5b. Then
these templates are combined using the interface places as shown in Figure 5c. The interface places
are depicted as blue circles and are used as connections between the GSPN templates. A token in an
interface place reflects the failure of the corresponding DFT element.
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Now consider the areas framed by dotted lines in Figure 5c. Each area indicates a part (i.e., BE or gate)
of the DFT on the left. The two timed transitions at the bottom trigger the failure of the respective
BEs A and B. They fire with their respective active failure rates FRa(A) and FRa(B). The remaining
white places, referred to as auxiliary places, and the immediate transitions simulate the behaviour of
the corresponding gate.
As mentioned above, the places colored in blue are interface places. Besides places that indicate
whether an element has failed, there are more places that act as interface places.

Definition 9 (Interface places). The set of interface places of a DFT F is given by

IF = {Failedv,Unavailv,Activev | v ∈ F} ∪ {Disabledv | v ∈ FBE}.

The interface places IF serve the purpose of communication between elements of the DFT F : the
failure of gate v is reflected by putting a token in Failedv. Unavailv and Activev places are used for the
claiming and activation mechanisms of SPARE gates, respectively. Disabledv is used for SEQ gates.
The DFT elements are composed of auxiliary places, transitions and arcs. In the following, we introduce
GSPN templates that specify the composition of different DFT gate types. Before we formally define
those, we consider priority variables. The priority variables π = {πv | v ∈ F} determine the order of
firing transitions and are used, e.g., to specify the order of failure propagation in DFTs. The priorities
of the transitions are functions over the priority variables π. Thus, the priority function is of type

Π: T → Nn

where n = |π| denotes the number of variables, and the instantiation in Definition 10 replaces the
priority variables by their concrete values.

Definition 10 (GSPN Template). The GSPN T = (P, T, I, O,H,m0,W,Nn,Π,D) is a (π-parametrised)
template over interface places I ⊆ P . The instantiation of T with c ∈ Nn is defined as the GSPN

T [c] =
(
P, T, I,O,H,m0,W,N,Π′,D

)
with Π′(t) = Π(t)(c) for all t ∈ T .

As already mentioned, the places in P are either interface or auxiliary places. Timed transitions sim-
ulate the failure of BEs, whereas immediate transitions are used to model the behaviour of gates. The
weights of the transitions realise randomisation mechanisms such as the failure rates of BEs. Consider
the simplified GSPNs corresponding to the BEs in Figure 5c (indicated by the two boxes at the bottom).
The firing rates of the immediate transitions correspond to the active failure rates FRa(A) and FRa(B)
from Definition 5. The partition D of the transitions specifies how non-determinism is treated, e.g.,
whether conflicts are resolved non-deterministically or probabilistically.
We will not go further into detail on weights, priorities and partitioning in this section since these
concepts are explained in detail in [20] and moreover will be described with respect to repairs in the
DFT elements in Section 5. For simplicity, we assume for now that each immediate transition has its
own partition, i.e., each conflict is solved by non-determinism.
We continue to elaborate the main concept of combining templates to obtain a template for an entire
DFT by means of the following example.

Example 11 (Translation of a DFT into a GSPN). In the following we explain how the DFT from Figure 5a
is translated into the GSPN shown in Figure 5c. Figure 6 depicts two GSPN templates. The one on the left
simulates the behaviour of an OR gate, and the one on the right simulates a PAND. In both cases, the places
at the bottom each represent an interface place of a child whereas the interface places at the top represent
the status of the respective gate. Now consider the intermediate step depicted in Figure 5b. The blue places
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Failedv Unavailv

@π⃗v @π⃗v

Failedv1 Failedvn

. . .

. . .

(a) GSPN template for OR

Failedv UnavailvFailSafe

Failedv1Failedv2

. . .

Failedvn

@π⃗v @π⃗v @π⃗v. . .

(b) GSPN template for PAND

Figure 6: GSPN templates for OR and PAND

correspond to the interface places of the GSPN templates. We omit the Unavailv places for a more intuitive
understanding. Adding the remaining transitions and auxiliary places of both templates ultimately leads
to the entire GSPN depicted in Figure 5c. In there, we replaced X by the GSPN template for an OR, Z by
the template for a PAND, and both A and B by the template for a BE (not depicted).

The compositional approach allows to translate DFT to GSPNs by simply translating each gate and BE
individually. New types of gates can therefore be introduced by simply defining the corresponding
GSPN template which then specifies their semantics.

4.3 Semantic Issues

The literature on DFTs introduces various kinds of semantics. These semantics agree on the behaviour
of single gates. The behaviour of each gate can therefore be clearly defined by providing the cor-
responding GSPN template [20]. However, the DFT semantics differ with regard to the handling of
failure propagation, forwarding in functional dependencies, and non-determinism. This can be seen
on the level of the GSPN by the fact that multiple orderings are possible in which immediate transitions
fire.

Example 12 (Failure propagation in the GSPN). Consider again the DFT from Figure 5a. The trace
fAfXfBfZ leads to a failure of the DFT. The trace fBfX fZ also leads to a failure. Note that here X and B
have failed simultaneously (without any progress of time).
The first trace can be replayed in the GSPN from Figure 5c by first firing the timed transition with rate
FRa(A) and then firing the immediate transition t1. Next, the timed transition with rate FRa(B) fires
and lastly, immediate transition t4 fires and places a token in FailedZ which indicates that DFT gate Z has
failed.
The second trace can be replayed by first firing the timed transition for B which places a token in FailedB.
However, now two transitions t2 and t4 are enabled; we thus have a conflict. Firing t2 first allows to fire t4
afterwards and a token is placed in FailedZ . This token indicates that Z has failed which also agrees with
the DFT trace. However, if transition t4 fires first, a token is placed in FailSafeZ . This indicates that PAND
Z has become fail-safe and can never fail. This corresponds to the trace fB ⊘Z fX .
The order in which the conflict between transitions t2 and t4 is resolved, therefore leads to vastly different
outcomes.

The semantic differences are surveyed in [19], and a comprehensive overview of existing DFT semantics
is given in [20, Table 1]. Moreover, the latter publication also shows that all those variants can be
covered by varying two parameters in the definition of GSPNs: the transition priorities Π and the
partitioning D of the immediate transitions. The priorities constrain the ordering of transitions, while
the latter controls the treatment of non-determinism. In [20, Table 4] it is shown that all different DFT
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semantics from the literature can be captured by only adapting the transition priorities and partitioning.
In particular, the net structure itself remains the same for all semantics.

4.4 Tool Support

The probabilistic model checker Storm [17], mentioned in Section 3, does not only accept GSPNs
in two different formats but also features a translation of DFTs into GSPNs. This functionality was
implemented in Storm version 1.2.1 and is further described in [20]. It expects DFTs to be given
in the Galileo format4. The generated GSPNs are exported as GreatSPN Editor projects in the pnpro
format5 and can be further analysed with the GreatSPN Editor [3]. A collection of DFT examples and
corresponding GSPNs is available online6.

5 Formal Semantics of Fault Trees with Repair

So far we postulated that failures of components are persistent. In this section, we no longer make this
assumption and consider repairs in Dynamic Fault Trees. In Repairable DFTs (RFTs), failed components
can be repaired after the failure. Thus, a failed system may turn operational again after the repair
of a component. We again begin with formally introducing RFTs, and then define their semantics in
terms of GSPNs. Furthermore, we identify semantic issues that need to be considered when integrating
repairs in the formalism of DFTs and propose potential solutions. The contents of this section are based
on the techniques described in [21].

5.1 Repairable Fault Trees

The most important syntactic extension that is required is the introduction of repair rates for BEs, which
complement the active and passive failure rates as defined in Definition 5. Similarly, a repair rate is
the parameter of an exponential distribution. While failure rates model the time to component failure,
a repair rate models the time until the component is repaired. It is defined as follows.

Definition 13 (Repair rate). Let v ∈ BE . The repair rate RR(v) of v is given by the function

RR : BE → R≥0.

A BE v with repair rate zero, i.e., RR(v) = 0, cannot be repaired.

Another syntactic extension is concerned with dependency gates (FDEP), which are obviously affected
by repair operations as they can have an impact on failure propagation. We assume that the repair
of the trigger event stops failure propagation while a repaired dependent child fails again by cause of
the failed trigger. Thus, FDEP gates do not propagate repairs. In order to support the propagation of
repairs affecting the triggering event, we additionally introduce RDEP gates. The semantic details are
provided in Section 5.2.1.
We extend the failure traces of Definition 6 to repairs by introducing the repair event rv (and rv for
BEs). Note that repairs can only take place if the corresponding element has failed before, i.e., a trace
such as fArArA is invalid.

4https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
5https://www.stormchecker.org/publications/gspn-semantics-for-dfts.html
6https://github.com/moves-rwth/dft-gspn-examples
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Activev

Disabledv

Failedv

Unavailv

fail-activevλ

fail-passivev
µ

repairvθ

Figure 7: GSPN template for repairable BE

5.2 Generic Translation of RFTs to GSPNs

This section explains the compositional translation introduced in [21]. We begin with GSPN templates
for basic events and gate types of repairable DFTs and then present their combination.

5.2.1 Templates for RFT Elements

The repair extension of templates is introduced in [21], which is again based on the GSPN templates as
presented in [20]. Therefore, we can re-use the notion of GSPN templates from Section 4. We highlight
the changes due to repairs in green color. The interface places I from Definition 9 remain highlighted
in blue, and their initial marking is defined by the initialisation template to be defined later. The other
places are initially marked with tokens as shown in the template.
If not otherwise depicted, gates have n children and the i-th child of gate v is denoted by vi. Children are
represented by some of the interface places that are relevant for mechanisms in the respective template.
Transition priorities are indicated by @ and the priority function π where π⃗v is the priority variable for
node v. We will elaborate on the priorities later. In order to provide a straightforward representation
of templates, we omit transition priorities in the majority of cases if they are equal to @π⃗v.

Basic Events. Figure 7 shows the template templ BE(v) for a repairable BE v. Node v is in a failed
state if place Failedv contains a token. An empty Unavailv indicates that v is available for claiming by a
SPARE, otherwise it is unavailable.
The failing of v is represented by firing one of the timed transitions fail-activev or fail-passivev, placing
a token into each of Failedv and Unavailv. If the place Activev holds a token, fail-activev is enabled and
the node fails with the active failure rate λ = FRa(v). The transition fail-passivev can fire if Activev
does not contain a token. Thus, v fails with the passive failure rate µ = FRp(v). A token in Disabledv
prevents both the active and passive failure of v. BE v is disabled if firing it would violate a SEQ. The
inhibitor arcs emanating Failedv prevent v to fail again if v is already in a failed state.
The timed transition repairv indicates the repair of a failed v with the repair rate θ = RR(v) according
to Definition 13. The tokens in Failedv and Unavailv are removed by repairv. Again, an inhibitor arc
prevents repairv to fire if Disabledv holds a token. Once v has been repaired, the failure of v can occur
again, because the place Failedv is empty again.

Example 14 (Failure of BE). Consider the simple trace fvrvfv. This trace can be mimicked in the GSPN
by first firing the timed transitions fail-activev, then firing repairv and lastly firing fail-activev again. Note
that trace fvrvfv therefore yields the same outcome as fv. This is intended behaviour as a repair can be
thought of as “undoing” the failure.

AND/OR Gates. The template templ AND(v) of the AND gate v is shown in Figure 8a. A failure of
all children leads to the failure of AND. This is represented by transition failv that puts a token in the
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(a) GSPN template for repairable AND
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(b) Failed AND
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(d) AND after firing of transition repairv1

Figure 8: GSPN template and repair procedure for AND

Failedv Unavailv

failv1 failvn

Failedv1 Failedvn

. . .

repairv

. . .

Figure 9: GSPN template for repairable OR

places Failedv and Unavailv. Thus, v is marked as failed as shown in Figure 8b. The marking therefore
corresponds to the trace τ1 = fv1 . . . fvnfv.
Once at least one child is repaired, AND is repaired as well. For each child vi of v, there exists an
immediate transition repairvi with an inhibitor arc coming from the place Failedvi of child vi. The in-
hibitor arc ensures that repairvi can only fire if no token is in Failedvi , i.e., vi is operational. In Figure 8c,
the transition repairv1 highlighted in green is about to fire because v1 was repaired. It corresponds to
the trace τ2 = τ1rv1 . Once a repair transition fires, the tokens from Failedv and Unavailv are removed,
resulting in v becoming operational again as depicted in Figure 8d. This corresponds to trace τ3 = τ2rv.
As shown in Figure 9, the template templ OR(v) of OR v is similarly structured.

Voting Gates. The template for repairs in a VOTk/n gate v is pictured in Figure 10. The failure of v
occurs if k of the n children of v have failed. The failure of child vi enables transition failvi , which puts
a token in place Collectv. Furthermore, to ensure that failvi can only fire once, failvi removes the token
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failv
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failv1 . . .

. . .

Nextn Failedvn

failvn
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k
k k

Figure 10: GSPN template for repairable VOTk/n

Failedv
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Failedvn

. . .

Failedv2Failedv1

savev1 savev2
failvn. . .

. . .

FailSafev2FailSafev1repairv1 repairv2 repairvn

ev1 evn−1

Figure 11: GSPN template for repairable PAND

from place Nexti. Once the collector place contains k tokens, transition failv fires, consumes k tokens
from Collectv and places a token in Failedv and Unavailv. In order to perform the repair procedure, it
is necessary to hold record of the number of failed children. Therefore, failv also returns the k tokens
back into Collectv.
If child vi is repaired, the transition repairvi fires, removes one token from Collectv and puts a token in
Nextvi . A token in Nextvi prevents the removal of multiple tokens from Collectv and allows once again
the firing of failvi . If Collectv contains less than k tokens, the transition repairvi can fire, causing the
repair of v.

Priority Gates. Priority gates fail if their children fail in the given order (left to right), and they turn
fail-safe if a failure violates the failing order. When the children are repairable, only the most recent
failure of every child is taken into account. Note that a repair can turn a fail-safe gate to non-fail-safe
and vice versa.
The PAND gate fails if the children failed in order from left to right including simultaneous failures.
The corresponding template templ PAND(v) with respect to repairs, is shown in Figure 11. For each
child vi except for the last one, there exists a place FailSafevi . If the right child vi+1 fails while child
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repairvn

Figure 12: GSPN template for repairable POR

vi is still operational, the transition savevi places a token in FailSafevi . This indicates that the PAND is
fail-safe due to vi (and vi+1) violating the order. Once at least one FailSafevi place contains a token, it
prevents the transition failvn to fire. As a consequence, v is fail-safe because failvn is the only transition
that could place a token in Failedv. In case the children fail in the correct failure order, every FailSafevi
place stays empty and Failedvn eventually contains a token. Thus, failvn fires and marks the failure of v.
If v is in a failed state and child vi gets repaired, the transition repairvi fires and removes the tokens from
Failedv and Unavailv. Thus, v is repaired. The repair of child vi while child vi+1 is still failed results in
v becoming fail-save, because repairvi fires first followed by savevi . If the place FailSafevi holds a token
and child vi+1 is repaired, the transition evi fires and empties FailSafevi . The correct failure order is
now restored through the repair. A similar template exists for the exclusive version of PAND [21], in
which simultaneous failures lead to fail-safe.

Example 15 (Failure and repair of PAND). We consider a PAND T with three BEsA,B and C as children.
Consider the trace τ1 = fAfCfB. BE A fails in the right order, but C failed before B. Thus, the PAND is
fail-safe. If now C gets repaired, the trace is τ2 = fAfCfBrC . As the failure of C is “undone” through
its repair, we can also think of it as never happening in the first place. An equivalent trace is therefore
τ ′2 = fAfB. Using the GSPN we can show that both traces τ2 and τ ′2 yield the same resulting marking, i.e.,
both traces result in the same state of the DFT.
A new failure of C, i.e., trace τ3 = fAfCfBrCfC fT (or τ ′3 = fAfBfC fT ) results in a failure of the PAND.
Repairing the children out of order again leads to a fail-safe PAND, e.g. τ4 = fAfBfC fT rBrT (or τ ′4 = fAfC).

The POR gate fails if its leftmost child fails first (also allowing concurrent failing of other siblings).
The corresponding template templ POR(v) is depicted in Figure 12. If the leftmost child fails before or
simultaneously with its siblings, transition failvi fires, which leads to the failure of v. The inhibitor arcs
emanating from Failedv1 prevent the other failvi transitions to fire. If a child vi right of v1 fails while v1
is operational, the transition failvi is enabled and puts a token in FailSafevi . The inhibitor arc emanating
from FailSafevi then prevents the transition failv1 from firing. Thus, once at least one FailSafevi place
contains a token, v is fail-safe.
For each child vi, there exists a transition repairvi . By repairing the leftmost child v1, the transition
repairv1 fires and removes the tokens from Failedv and Unavailv making v operational again. If a child
vi right of v1 gets repaired and FailSafevi contains a token, repairvi fires and removes the token from
FailSafevi . If no FailSafevi contains a token, v is not fail-safe and v can fail again. Again, an exclusive
variants exists as well, see [21].

Dependency Gates. Recall that we restricted DFTs to conventional DFTs as in Definition 8, and thus
all children of an FDEP gate are BEs.
Figure 13 shows the template templ FDEP(v) for an FDEP v with repairs. The FDEP itself can not fail.
Hence, the place Failedv is not connected to any transition. As long as the trigger v1 is failed, the

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 17/33



Deliverable D2.2:
Inventory and Specification: Extended Fault Trees

Failedv1 Failedv Unavailv
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Figure 13: GSPN template for FDEP

Failedv1
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startv Forwardv Failedv Unavailv
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propagatev2 . . .

. . .

@π⃗v
propagatevn

Failedv2Unavailv2 Disabledv2 FailedvnUnavailvn Disabledvn
@π⃗v

returnv

resetv

@π⃗v+1

Figure 14: GSPN template for RDEP

transition propagatevi can fire if the child vi is operational and enabled. Firing propagatevi marks child
vi as failed. Note that all propagation transitions are enabled at the same time, i.e., they are in conflict.
The order in which dependent children are rendered failed thus depends on the priorities, partitioning
and weights. A possible trace is for example fv1fv2fv3 .
Note that dependent children which are repaired can be immediately rendered failed again by a (still
triggered) dependency. An example is the trace fv1fv2fv3rv2fv2 where v2 fails again due to the depen-
dency. Once v1 is repaired, the failure propagation stops because Failedv1 is empty. However, the repair
is not forwarded to the dependent children and they can still be failed.
In order to forward repairs, we introduce a new dependency gate: the RDEP gate. While an FDEP
forwards failures, an RDEP forwards repairs. Thus, if the trigger of a RDEP gets repaired, the children
are repaired as well. An example trace is fv2fv1fv3rv1rv2rv3 in which the repair of v1 also triggers the
repairs of v2 and v3. The template templ RDEP(v) for RDEP v is depicted in Figure 14.
Because the trigger v1 of RDEP v has to fail first before v1 can be repaired, Startv is initially left empty.
Only if v1 fails, transition returnv can fire and puts a token in place Startv. If v1 is then repaired, the
transition startv fires and moves the token from Startv to Forwardv. As long as Forwardv holds a token,
every failed (and not disabled) dependent child vi is repaired by the transition propagatevi . Once v1
fails again, resetv removes the token from Forwardv and the repair propagation stops. Note that the
higher priority of the transition resetv in comparison to propagatevi prevents the propagation to carry
on, once v1 and dependent child vi fail simultaneously.
Note that in an RDEP – as for the FDEP – dependent children which are failed can be immediately
repaired again by a repaired trigger. An example is the trace fv1fv2rv1rv2fv2rv2 where v2 is immediately
repaired after its failure due to the repair dependency.

Restrictor Gates. As described in Definition 8, we assume that children of restrictors such as SEQ
(and MUTEX) are solely BEs. Children of a SEQ are only allowed to fail in strict order from left to
right. Failures out of order are not possible. To ensure this order, repairs can only happen in the
opposite direction from right to left. Hence, if multiple children have failed, the rightmost child needs
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Figure 15: GSPN template for a SEQ with repair restrictions

to be repaired before the other ones can be repaired.
Figure 15 shows the template templ SEQ(v) for the SEQ gate v with three exemplary children. Cases
with a different number of children work similarly. For each SEQ which affects the behaviour of BE
vi, the Disabledvi place initially contains a corresponding token. Disabledvi is therefore one of the only
places in the overall GSPN which can contain more than one token.
A token in Currentvi indicates that the child vi is currently the only enabled and operational child.
Furthermore, the child vi−1 is failed and enabled for repair. All children except for vi and vi−1 are
disabled.
Because v1 has no left sibling, Currentv− initially holds a token. Thus, the transition failv− fires and
enables v1 by removing a token from Disabledv1 . In addition, the transition moves the token from
Currentv− to Currentv1 and marks that v1 is now enabled and operational.
In general, if Currentvi holds a token and child vi fails, the failvi transition fires. The firing of failvi
enables child vi+1 (by removing a token from Disabledvi+1) and disables child vi−1 (by again placing
a token in Disabledvi−1). Additionally, transition failvi moves the token from Currentvi to the successor
place Currentvi+1 (provided it exists).
As an example, consider the trace fv1fv2 . After the failure of v1, place Currentv2 contains a token, and
places Disabledv1 and Disabledv2 contain no token any more. The failure of v2 allows to fire transition
failv2 , which moves the token to Currentv3 indicating that v3 could fail next. Moreover, v3 is enabled by
removing the token from the corresponding place Disabledv3 . Child v1 becomes disabled again through
a token in Disabledv1 , because v1 cannot be repaired before v2 is repaired.
The repairs can take place from left to right. If Currentvi holds a token and child vi−1 is repaired,
repairvi−1

fires. This enables child vi−2 and disables child vi. Furthermore, repairvi−1
moves the token

from Currentvi to Currentvi−1 indicating that vi−1 is now enabled and operational. If the rightmost child
v3 has failed, place Currentv+ contains a token, indicating that all children are currently failed.
As an example for repairs in SEQ, consider the trace fv1fv2rv2 , which extends the previous trace. Repair-
ing v2 fires transition repairv2 , which moves the token from Currentv3 back to Currentv2 . Furthermore,
v3 is disabled while v1 is enabled.

SPARE Gates. A SPARE can claim one of its children. If the claimed child fails, the SPARE attempts
to claim another child that is currently operational and available, i.e., not already claimed by another
SPARE. If no child can be claimed any more, the SPARE fails. The order in which the children are
claimed by a SPARE can be specified in the design of the SPARE. By default, children are claimed
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child-failv2
@π⃗v
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@π⃗v+1

Failedv

Unavailv

Figure 16: GSPN template segment for SPARE with left-to-right claiming order

from left to right. In RFTs, children can also be repaired. Thus, we need to specify the impact of a
child-repair on the SPARE.
Another aspect in SPAREs is activation. Claiming a child activates it – and the elements in the corre-
sponding subtree. Active elements fail with their active failure rate, while inactive elements fail with
their passive failure rate. Repairs in RFTs therefore also necessitate a deactivation mechanism.
As a consequence, the template for SPAREv is divided into four parts: Claiming, Child Repair, Activation
and Deactivation. We consider only SPAREs with early claiming based on the template from [20]. Early
claiming means that a (nested) SPARE claims children even if it itself is not yet activated. We refer
to [19] for details on early claiming and other claiming behaviour.
(1) Claiming: There are multiple possibilities in which order the children are claimed by a SPARE. We
will consider the left-to-right claiming order and the arbitrary claiming order. The part of the template
for SPARE v which sets the claiming order of the children from left to right is depicted in Figure 16. We
consider the trace clvvifvicl

v
vi+1
. In the template, Nextv initially contains a token. Whenever a token is in

Nextv, a new child has to be claimed. If the child vi is available for claiming, meaning that Unavailvi is
empty, the transition claimvi can fire and removes the token from Nextv. This corresponds to event clvvi .
After firing the transition, Nextv is empty and the claiming of another child is prevented. Additionally,
claimvi puts a token in Claimedvi and Unavailvi , thus making the claimed child unavailable for other
SPAREs. If multiple children are available for claiming while Nextv holds a token, multiple claimvi have
concession. In this case, the leftmost available child is claimed because the priorities of the claimvi

transitions decrease from left to right and thus, only the left-most transition is enabled.
If the claimed child vi fails, i.e., event fvi happens, then child-failvi fires. Firing the transition removes a
token from Claimedvi , and places a token in Nextv indicating v needs to claim a new child. Since a failed
child can be repaired and claimed by a SPARE again, the transition child-failvi additionally removes one
token from Unavailvi , indicating that the child is not claimed by v any more. Notice that one token was
placed there during the claiming process and another during the failure of child vi. Thus, after firing
of child-failvi , Unavailvi still holds a token. Next, as place Nextv contains a token again, SPARE v tries
to claim a new child, for example clvvi+1

. If every child of v is unavailable for claiming, unavailablev
can fire. As a consequence, unavailablev places tokens in both Failedv and Unavailv and thus marks the
failure of SPARE v.
Note that the order in which SPARE children are claimed can easily be changed by simply adapting
the transition priorities of transitions claimvi . Other claiming orders can therefore be implemented
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Failedv
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repairv1 repairv2 repairvn

. . .

Figure 17: GSPN template segment for SPARE with unchanged claiming after child repair
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. . . . . .

(a) Activation in SPARE

Activev

@π⃗v

Activev1

. . .
@π⃗v

Activevn

(b) Activation in gates

Figure 18: GSPN template segment for activation mechanism of DFT elements

individually per SPARE without changing the general structure of the template. In particular, the
arbitrary claiming order can be defined by setting all priorities to the same value.
(2) Child repair: There are (at least) two different ways in which a repair of a child impacts a SPARE
that has claimed this or another child. The first version, which we will formalise here, specifies that a
claimed child stays claimed by the SPARE as long the child is operational. Thus, only if the currently
claimed child fails, another child can be claimed. An example for this behaviour is the following trace

τ = clvv1fv1cl
v
v2rv1fv2cl

v
v1 .

Here, the repaired child v1 is only claimed again after the currently used child v2 has failed. The second
version, which is described in [21], defines that every time a child is repaired, the currently claimed
child is released and a new claiming takes place. Applied on the previous trace τ , this behaviour can
yield the following trace

τ ′ = clvv1fv1cl
v
v2rv1cl

v
v1 .

Here, the repaired child v1 is immediately claimed again after its repair – even though child v2 is still
operational. In both cases, if a child is repaired while the SPARE is failed, the SPARE is repaired and
it is possible for the SPARE to claim a child.
The template segment of SPARE v depicted in Figure 17 specifies that a child stays claimed by v as
long as it is operational. Transition repairvi can fire if v is failed and child vi is available again. Note
that vi can become available either because it is repaired or it becomes unclaimed by another SPARE.
Recall from Figure 16 that Nextv is empty when v has failed. Thus, repairvi places a token in Nextv and
v can try to claim a child again.
(3) Activation: If a child is claimed by an active SPARE, the nodes in the spare module belonging to
this child are activated. An activated BE fails with the corresponding active failure rate. If a SPARE
is activated, it propagates the activation to its claimed child. When other gates are activated, they
activate their children. Thus, the activation propagates downwards until all nodes are activated.
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. . .

. . .

(a) Deactivation mechanism in SPARE children

Activev1w1

Activev
. . .

@π⃗viwj

Activew

(b) Deactivation in gates

Figure 19: GSPN template segment for deactivation mechanism of DFT elements

The part of the template depicted in Figure 18a shows the activation mechanism in SPAREs. Consider
the trace ↑v clvvi ↑vi . Here, SPARE v is active and has claimed child vi. Both places Activev and Claimedvi
therefore contain a token. As a consequence, the transition activatevi can fire if the child vi has not been
activated already. If activatevi fires (corresponding to event ↑vi), it puts a token in Activevi indicating
that child vi is activated. Note that the place Bufferviv will become relevant for the deactivation.
Other gates simply propagate the activation to their children as depicted in Figure 18b. All children of
v are activated if Activev contains a token, meaning v is active.
(4) Deactivation: With the possibility of repairing a node, deactivation of components becomes possible.
For instance, if a child that is claimed by a SPARE fails, the claiming could be withdrawn. In this case,
the child and all nodes in the spare module should be deactivated. Deactivation of a node v is indicated
by event ↓v.
Similarly to activation, deactivation propagates downwards. If a SPARE gate releases the claim on a
child, all nodes in the spare module of that child are deactivated. Deactivated BEs fail with their passive
failure rate. The deactivation of a SPARE also leads to the deactivation of the claimed child. As for
activation, other gates propagate the deactivation downwards to the leaves of the spare module. As
mentioned in [19], dependencies such as FDEPs do not propagate activation signals. Thus, they do not
propagate deactivation signals either.
The deactivation mechanism of SPARE children is depicted in Figure 19a. A node vi that was activated
by SPARE v is deactivated either if v withdraws the claim of the node or if v itself is deactivated. This
is handled by removing a token from Bufferviv. Since a node can have multiple parents v, w, . . . that
keep the child activated, every parent node has to be considered in the deactivation process.
Figure 19b shows the deactivation mechanism in gates. A node gets deactivated if all its parent gates
are not active.

Extensions. The compositionality of the GSPN framework allows to easily support additional types
of gates. For a new gate, we simply need to specify the corresponding GSPN template and connect it
with the existing interface places.
For example, one could add a GSPN template for repair boxes and, thus, allow more complex repair op-
erations. Supporting repair boxes would require adding new interface places to BEs capturing whether
a repair of the BE is currently under way. The repair box would then place a token into the correspond-
ing place for a BE v to enable the timed transition repairv. This signals that the repair process of BE
v has started. In contrast to the existing BE template, repairs would only be possible if initiated by a
repair box. Repairing multiple inputs simultaneously could be modelled similar to the GSPN template
for an RDEP.
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Init

@π⃗init

Activetop

Figure 20: GSPN template for initialisation

5.2.2 Combining Templates

In this section, we define how the GSPN templates for individual DFT elements are combined to obtain
a GSPN template TF for an entire DFT F (cf. Figure 5). Because the GSPN templates for the DFT
elements in repairable DFTs provide a similar structure and in particular the same interface places as
in Section 4.2, the mechanisms of combining templates are similar to the process described there.

Initialisation Template. Before we can translate a DFT to a GSPN, we need to define the GSPN
template that reflects the initialisation of a DFT. It is denoted by templ init, and is depicted in Figure 20.
In order to start the top-down activation mechanism, the immediate transition is the first transition
that fires. It places a token in the Activetop place which corresponds to the active place of the top event
top of the DFT. This template therefore correspond to event ↑top .

Merging Templates. Lastly, it remains to describe how different GSPN templates are combined. We
define the merge of two GSPN templates as follows.

Definition 16 (Merging Templates). Let Ti = (Pi, Ti, Ii, Oi, Hi,m0,i,Wi,N[π],Πi,Di) for i = 1, 2 be π-
parametrised templates over the interface places I = P1∩P2. The merge of T1 and T2 is the π-parametrised
template merge(T1, T2) = (P, T, I,O,H,m0,W,Nn,Π,D) with:

• P = P1 ∪ P2,

• T = T1 ⊎ T2, O = O1 ⊎O2, I = I1 ⊎ I2, H = H1 ⊎H2,

• m0 = m0,1 +m0,2,

• W = W1 ⊎W2, Π = Π1 ⊎Π2, D = D1 ⊎ D2.

Since a DFT can consist of more than two components, we define the merge of multiple templates over
IF by concatenating the binary merge. Let T denote a non-empty set of templates over some I and
let T be a template over I. The merge operator is associative and commutative since the union of sets
satisfies these properties. Hence, we let

merge(T ∪ {T }) =

{
merge(T ,merge(T)) |T| > 1

merge(T , T ′) T = {T ′} .

To obtain the GSPN for an entire repairable DFT, each RFT element v with type t(v) is transformed
into a GSPN via the templates templ t(v)(v) as described before. Additionally, the initialisation template
templ init is required. Thus, we define the GSPN template of an entire RFT as follows.

Definition 17 (Template for an RFT). Let F = (V, σ, t , top,FRa ,FRp ,RR) be an RFT, and moreover
let

{
templ t(v)(v) | v ∈ F

}
be the set of templates over IF , each with priority variable πv. The GSPN TF for

F with places P ⊃ IF is defined by

TF = merge
({

templ t(v)(v) | v ∈ F
}
∪ {templ init}

)
.
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Figure 21: Simplified resulting GSPN for a repairable DFT

Recall that we already converted the DFT depicted in Figure 5a to the GSPN shown in Figure 5c.
When doing this, we assumed that the DFT consisted of non-repairable elements. We now consider a
repairable variant.

Example 18 (Translation of an RFT to a GSPN). Consider the DFT in Figure 5a again. We assume that
all BEs are repairable. The corresponding GSPN for the RFT is depicted in Figure 21. Notice that we use a
simplified version of the GSPN as we want to focus on the repair mechanisms. The parts that were added
to model repairs are highlighted in green.
The BEs A and B are now repairable as reflected by the corresponding repairA and repairB transitions.
Thus, in addition to the failure rate FRa(v), each BE v has a repair rate RR(v).
Consider the trace fAfBfX fZrArBrXrZ . The failed OR X is repaired if both its children are operational. In
this case the immediate transition t5 removes the token from FailedX , indicating the repair of X. A failed
PAND Z is repaired if at least one of its childrenX or B is operational and either t6 or t7 fires and removes
the token from FailedZ . Since Z is the top-level event, this reflects the repair of the entire DFT. In our case,
Z is failed because A failed before B.
Consider the trace fB⊘Z fAfXrB. In this trace, Z is fail-safe because B failed before A. After the repair of
B, the PAND Z returns to non-fail-safe. In this case, t9 fires and removes the token from FailSafeZ .

Notice that we already assigned priorities to the transitions in this example. In the following we explain
how priorities affect the behaviour of the RFT and how conflicts between GSPN transitions can be
resolved.

5.3 Semantic Issues

In this section, we analyse semantic aspects that need to be considered when including repairs in DFTs.

5.3.1 Failures Caused by Repairs

Intuitively, a successful repair operation should decrease the number of failed elements. However, this
does not apply to all situations. For example, consider the DFT in Figure 22a and the trace

τ = fBfA⊘Z .
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Figure 22: Aspects of priority gates

The two children A and B of the POR gate Z failed but Z itself remains operational since B failed
prior to A. In this situation, a repair of B would now lead to a failure of Z:

τ ′ = fBfA⊘Z rBfZ .

This can easily be seen by looking at the corresponding “reduced” failure trace τ ′′ = fAfZ which omits
failures that are “cancelled out” by repairs.
Repairs can increase the number of failed elements.

5.3.2 Remarks on Priority Gates

In this section, we elaborate on the difficulties that arise with priority gates with regard to repairs.
Consider the DFT in Figure 22b and the following trace

τ = fBfX⊘Z fAfC .

Since the failure of B led to a failure of X before A failed, the PAND gate Z is fail-safe. The problem
arises when the child B of X is repaired, i.e., trace

τ ′ = fBfX⊘Z fAfCrB.

According to the GSPN template for the OR gate, X is not repaired since its other child C is still failed.
As a consequence, the failure order of Z is still violated and Z remains fail-safe. However, we obtain a
different result if we consider the reduced failure trace

τ ′′ = fAfC fX fZ .

Here, A failed before C (and X) and therefore Z fails as well.
Failures and repairs do not necessarily cancel each other out.

5.3.3 Remarks on Repair Dependencies

In this section, we focus on some aspects for repair dependencies that need further consideration. The
first is that the proposed encoding of FDEPs only propagates failures but not repairs. However, we can
easily extend our reasoning to repairs by combining the FDEP with an RDEP as exemplarily depicted
in Figure 24. Here, BE C is a trigger for both the FDEP gate D1 and the RDEP gate D2. Thus, if the
trigger C fails, the dependent element E fails. If C is repaired, E is repaired as well.
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Figure 23: Alternative GSPN template for RDEP

Figure 24: Modelling of external and internal causes of failures

Lastly, we demonstrate that it is not required to distinguish between an internal and an external failure
of a BE. The former is modelled by the timed transition of the BE whereas the latter is caused by the
propagation of an FDEP gate. We can model the distinction by using an additional BE and an OR gate.
We explain the underlying idea by the following example.

Example 19. Consider the DFT in Figure 24 that models an element O which can fail due to internal or
external causes. The BE I reflects the internal part and it can only fail and be repaired by itself. An example
of an internal failure and repair is the trace fI fOrIrO.
In order to model the external part, we use the BE E that can neither fail nor get repaired by itself but is
the dependent child of both an FDEP and an RDEP. The trigger C models the external cause of failure.
As a result, E can only fail due to the failure of C and is only repaired if C is repaired. An example of an
external failure and repair is the trace fC fEfOrCrErO.
The whole elementO is operational only if both the internal part I and the external partE are operational.

FDEP and RDEP allow to explicitly model forwarding of (1) only failures, (2) only repairs or
(3) both. (Repair) dependencies can be used to distinguish between internal and external failure
causes.

5.3.4 Failure and Repair Propagation

As mentioned earlier, the priority assignment of the transitions in Figure 21 has an impact on the
behaviour of the DFT. Consider again the DFT in Figure 5a and the corresponding GSPN in Figure 21.
The transitions that correspond to the GSPN part of the OR gate X have a higher priority than those
of the PAND gate Z. Assume that every transition has the same priority instead. We consider the
failure fB which means that both transitions t2 and t4 are enabled. Firing t2 leads to a failure of Z
and corresponds to trace τ1 = fBfX fZ . Firing t4 lead to Z becoming fail-safe and corresponds to trace
τ2 = fB⊘ZfX⊘Z . Thus, the result of a failure also depends on the priority assignment within the GSPN.
As specified in [20], we can control the propagation of failures by assigning certain priorities to the
transitions: if we assign the same priority to every transition, then the propagations can occur in every
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Figure 25: Example for repair propagation

possible order. But if we want to fix that the propagation proceeds in a bottom-up fashion, each gate
must be assigned a lower priority than its children. Since all transitions belonging to the same DFT ele-
ment v are affected in both cases, the repair propagation is modified correspondingly. In the following
we show that the order in which repairs are propagated influences the behaviour as well.
Consider the DFT in Figure 25 and the trace

τ = fB⊘Z fAfX⊘Z .

The POR gate Z is fail-safe as the failure of B occurred before the failure of X. Now assume that B is
repaired, i.e., rB happens. The status of Z depends on the evaluation order. If X is evaluated first, we
obtain the following trace

τ1 = fB⊘Z fAfX⊘Z rBrX⊘Z .

Here,X is repaired first. Afterwards, Z is considered and it stays operational, because both its children
are operational. However, if Z is evaluated before X, the corresponding trace is

τ1 = fB⊘Z fAfX⊘Z rBfF rXrZ .

The repair of B would lead to a failure of Z, because X is still failed at the moment of evaluation.
After evaluation of X, X is repaired and therefore Z will be repaired as well. However, since the
failure could be propagated by another gate in the meantime, it may have a permanent effect. If this
is considered unintended behaviour, it can again be prevented by assigning a higher priority to the
children in comparison to the gate.
The status of DFT elements depends on the order in which failures and repairs are propagated.
The propagation order can be captured by the priority assignment in the GSPN.

5.3.5 FDEP and RDEP Forwarding

As discussed in [20], the order of evaluating FDEP gates can influence the behaviour of DFTs. Consider
the DFT in Figure 26a and the failure of BE B. If the FDEP D forwards the failure to A before Z is
evaluated, we obtain the following trace

τ1 = fBfAfZ .

Z fails since the effect is that the failures of A and B happen simultaneously. However, if Z is evaluated
before D, we obtain a different trace

τ2 = fB⊘Z fA⊘Z .

The failure of B is interpreted to happen strictly before the failure of A. Thus, Z becomes fail-safe. We
distinguish between evaluating FDEPs (1) before, (2) after or (3) interleaved with failure propagation
in gates.
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Figure 26: Examples for dependency forwarding

Similar to FDEPs, we also need to specify when repairs are forwarded through RDEPs. Consider the
DFT in Figure 26b with two dependency gates and the trace

τ = fAfBfC .

If B is repaired, both dependencies can act. Either RDEP D2 first forwards the repair from B to C or
FDEP D1 first forwards the failure from A to B. The former results in a trace where C is repaired:

τ1 = fAfBfCrBrC fB.

The latter results in a trace which prevents the repair of C:

τ1 = fAfBfCrBfB.

Thus, it is very important when RDEP gates are evaluated, also in comparison with FDEP gates.
We distinguish between the evaluation of RDEPs (1) before, (2) after or (3) interleaved with FDEPs.
Depending on the order of evaluating FDEPs and gates, we can specify if gates are evaluated before
or after RDEPs by assigning the respective priorities. Thus, we can specify that for example FDEPs
are evaluated before RDEPs and RDEPs before the remaining gates by assigning the highest priorities
to transitions belonging to an FDEP, and the second highest ones to RDEPs. Accordingly, the lowest
priorities are assigned to the remaining gates. Thus, for all f ∈ FFDEP, r ∈ FRDEP and g ∈ F \ (FFDEP∪
FRDEP) we have πf > πr and πr > πg. Interleaved evaluation of FDEPs and RDEPs is realised by
assigning the same priority to each transition.
FDEPs can be evaluated (1) before, (2) after or (3) interleavedwith gates. RDEPs can be evaluated
(a) before, (b) after or (c) interleaved with FDEPs. Priorities in the GSPN specify the order of
evaluation.

5.3.6 Spare Races

In this section, we elaborate on the handling of so called spare races. As described in [20], races may
occur if two or more SPARE gates share a child, and if their triggering events fail simultaneously. In
this situation, multiple SPAREs try to claim the same child. The simultaneous failure of the children
is possible if, e.g., an FDEP immediately propagates the failure to the dependent children once the
trigger fails.
With the possibility of repairs, spare races can even emerge in scenarios that do not require multiple
children to fail at once. For instance, consider the DFT in Figure 27 and the following trace

τ = clS1A clS2B fBcl
S2
C fAfS1fP fC fS2.

POR gate P failed because the SPARE gate S1 failed before S2.
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Figure 27: Example of a spare race

If child C is repaired, a spare race may arise, since C can be claimed by both S1 or S2. If S1 “wins”,
then P becomes fail-safe as can be seen by the trace

τ ′ = clS1A clS2B fBcl
S2
C fAfS1fP fC fS2rCcl

S1
C rS1rP .

If S2 “wins”, then P remains failed:

τ ′ = clS1A clS2B fBcl
S2
C fAfS1fP fC fS2rCcl

S2
C rS2⊘P .

In the GSPN the spare race is represented by a conflict between the two claim transitions.
The solutions proposed in [20] for DFTs can be applied to the GSPN semantics for RFTs as well: the
conflict can be resolved either by randomisation or non-determinism. This choice can be specified in
the GSPN by adapting the partition of the immediate transitions. Details are provided in [21, Sect. 4.6].
Repairs can lead to spare races which must be resolved either by randomisation or by non-
determinism. The desired behaviour can be specified by setting the partition in the GSPN.

5.3.7 Allowing Dependencies Triggered by Repairable Gates

In Definition 8 we required that all children of an FDEP are BEs. If we drop this restriction (for the first
child) and allow dependencies that are triggered by gates, further specifications regarding the propaga-
tion of failures and repairs by dependencies are necessary. According to the GSPN semantics proposed
in [20], FDEPs forward failures immediately in order to reflect bottom-up failure propagation. This
is realised by evaluating children of dynamic gates strictly before their parents, which is enabled by
providing the following priority assignments:

πv < πvi ∀v ∈ FPAND ∪ FPOR ∪ FSPARE ∪ FSEQ,∀ i ∈ {1, . . . , |σ(v)|} .

In static gates, the order of failures is irrelevant and the priorities are specified in a non-strict way:

πv ≤ πvi ∀v ∈ FAND ∪ FOR ∪ FVOTk/n, ∀ i ∈ {1, . . . , |σ(v)|} .

Triggers of FDEPs are assigned a priority not smaller than the priorities of the dependent children:

πf1 ≥ πf ≥ πfi ∀f ∈ FFDEP,∀ i ∈ {2, . . . , |σ(f)|} .

In the following, we will focus on RDEP gates but similar problems arise by considering only FDEP
gates triggered by repairable gates. We apply the bottom-up failure propagation to repairable DFTs
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(a) RDEP triggered by gate (b) GSPN for RDEP triggered by gate

Figure 28: Example for cyclic repair propagation

and assume that repairs are propagated in a bottom-up manner as well. Thus, we extend the priority
assignment as follows:

πf1 ≥ πf ≥ πfi ∀f ∈ FRDEP,∀ i ∈ {2, . . . , |σ(f)|} .

Furthermore, a conflict between enabled transitions is resolved by non-determinism since every imme-
diate transition is a separate partition. As the following example will show, non-determinism can occur
in DFTs with dependencies triggered by gates that are repairable.
Consider the DFT in Figure 28a and the following trace

τ = fBfZrBrZfB.

Figure 28b depicts the corresponding GSPN after the trace τ . Place ForwardD contains a token indicating
that RDEP D forwards the repair of X. Additionally, a token is in FailedB indicating that B has failed.
In the GSPN, two transitions are now in conflict: failX2 and propagateD2

. If failX2 fires first, a token is
placed in FailedX , and afterwards the token in ForwardD is removed. Note that transition resetD1 always
fires before propagateD2

because it has higher priority. This behaviour corresponds to trace

τ1 = fBfZrBrZfBfX .

In this trace, the repair propagation is stopped and B remains failed.
However, if propagateD2

fires first, the token is removed from FailedB and B becomes operational. This
corresponds to trace

τ2 = fBfZrBrZfBrB.

Thus, the order of failures propagation decides whether B is failed or operational.
Intuitively, the conflict can be avoided by assigning appropriate priorities πX and πD. However, the
priorities as described above induce the following restrictions:

πA ≥ πX , πB ≥ πX , πX ≥ πD, and πD ≥ πB.

Thus, the only valid priority assignment induces thatB,X andD get the same priority since every other
priority assignment would violate the constraints. Consequently, the conflict between the transitions
failX2 and propagateD2

can only be solved by non-determinism.
According to the monolithic semantics elaborated in [20] that allows dependencies triggered by gates,
gates are evaluated strictly after their children and dependencies are evaluated strictly after all gates.
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If we apply this principle to repair dependencies, it implies that πX > πD, πA > πX and πB > πX . If
we apply these priorities to the GSPN depicted in Figure 28, only transition repairX is enabled and only
trace τ1 is possible.
Allowing dependencies which are triggered by gates can lead tomultiple possible orders of failure
propagation. Priorities need to be specified to ensure that failures and repairs are propagated
in the desired order.

5.4 Tool Support

As described in Section 4, the translation from DFTs to GSPNs is implemented in the probabilistic
model checker Storm [17], more concretely its library Storm-dft which provides tool support for
DFT analysis. Storm-dft reads DFTs from a custom JSON format or from the Galileo text format. The
resulting GSPN can be exported into formats such as the GreatSPN Editor format or pnpro for further
analysis [20].
In [21], this functionality was extended to Repairable DFTs. First of all, parsing support was extended
to incorporate new types of gates such as RDEP. Moreover, for SPARE gates the claiming strategy
(either left-to-right or non-deterministic choice) and the behaviour after a child-repair (keep currently
claimed child or reclaim new child) can be specified. For BEs, the repair rate can be given via an
optional argument.
After parsing an RFT, Storm-dft automatically identifies the repairable DFT elements. RDEPs and BEs
with non-zero repair rate are always repairable. All other gates are set to repairable if at least one child
is repairable.
Following Definition 17, the transformation from an RFT to a GSPN is implemented compositionally.
Each DFT element is translated individually according to the corresponding GSPN template as described
before. The priorities for the immediate transitions are calculated such that they satisfy the constraints
from [20] and ensure a bottom-up failure and repair propagation in the RFT. However, if needed, the
priorities in the GSPN can also be changed later on to model a different order of propagations in the
RFT.

6 Conclusion

In this report, we gave an overview of Fault Tree extensions with repair and maintenance aspects.
Moreover, we investigated some issues concerning their semantics, and introduced a compositional
approach to specifying the latter by defining a modular translation of Repairable Fault Trees into Gen-
eralised Stochastic Petri Nets (GSPNs). Finally, we provided links to existing implementations of parts
of a corresponding tooling environment to be developed in the further course of the MISSION project.
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