
Deliverable D1.1
Inventory of Practice: Resources

Deliverable
Number and title: D1.1 – Inventory of Practice: Resources
Work package: WP1 (Energy and Resources)
Lead author: Gregory Stock (USAAR)
Contributors: Juan A. Fraire (UNC), Holger Hermanns (USAAR), Eduardo Cruz (GOM),

Alastair Isaacs (GOM), Fakhri Babayev (GOM)
Reviewers: Pedro R. D’Argenio (UNC), Zhana Imbrosh (GOM)
Due date (GA): M6 (2022-03-31) Dissemination level: Public
Due date (revised): 2022-07-31 Version: 1.0 (final)
Submission date: 2022-07-05 Pages: 23

Version history
Version Date Notes
1.0 2022-07-05 First official release

Project

Title: Models in Space Systems: Integration, Operation, and Networking
Acronym: MISSION Start date: 01-10-2021
GA no.: 101008233 Duration: 48 months
Call: H2020-MSCA-RISE-2020 Website: mission-project.eu

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233.

This document reflects only the authors’ view. It does not represent the opinion of the European Union,
and the European Union is not responsible for any use that may be made of the information it contains.

Ref. Ares(2022)4893992 - 05/07/2022

https://mission-project.eu/


Deliverable D1.1:
Inventory of Practice: Resources

1 Introduction

There is an increasing interest of the space community in Low-Earth Orbit (LEO) satellites for Earth
observation, as well as in deploying large-scale LEO networks with the purpose of providing timely
access to information [2]. LEO satellites orbit the Earth at a height between 400 and 2000 km. They
have the advantage of being close enough for high-resolution Earth observation and for good signal
quality reception from communication devices on ground. However, orbital periods in between 90 and
130 minutes render short visibility episodes from ground sites, where a LEO satellite appears on the
horizon and disappears on the opposite side in about 6 to 12 minutes. Depending on the latitude of the
location, a LEO satellite will appear over a spot 2 to 4 times a day. In these systems, on-board communi-
cation and observation technologies induce notoriously high power demands that are generally difficult
to counterbalance by solar infeed and on-board battery storage, due to size and weight limitations. Fur-
thermore, the position of LEO objects relative to each other, to the Sun, and to points of interest on
Earth is the result of the superposition of an excessive number of (approximately) periodic rotations.
It takes several decades for all these elements to repeat the same relative position, and interim grav-
itational perturbations, station-keeping maneuvers, or mission parameter changes prevent the use of
scheduling or planning mechanisms based on periodicity. All this makes the algorithmic problem of
dynamic battery-powered satellite operation and inter-satellite communication a very difficult, yet an
important one.
While around 2000 active satellites are currently in orbit, recent studies show that constellations to-
talling more than 50 000 are on the launch schedule for the next 10 years [17]. Especially in the
presence of communication interdependencies, the management of such constellations will require pro-
found models as well as effective algorithmic techniques for administering their operation, based on a
proper extrapolation of the electric power budget as part of the inter-satellite and satellite-to-ground
communication design [12]. This is to be embedded into a domain-specific software infrastructure that
seamlessly plugs into the usage context of satellite operators.
For single LEO satellite missions with multiple modes of operation, the default approach to master
the challenge is thus far a manual one: a human operator takes ad-hoc decisions about what task the
satellite is to effectuate next. Previous in-orbit experiments with the GomX–3 satellite [21, 7] have
shown that already in this context there is massive room for improvement by properly modeling and
analyzing the satellite’s battery, together with the operational constraints and orbital environment of
the satellite. At the core of that work is a representation of the problem as a network of priced timed
automata and an engine [5] to solve cost-optimal reachability over a limited time horizon. This has
resulted in an automated and resource-optimal day-ahead one-shot scheduling over a time horizon of
36 hours, effectuated in orbit in March 2016.
That approach, however, fell short in a number of dimensions. On the one hand, the timed automata
formulation is bound to linear dynamics (to assure decidability of the underlying problem class). There-
fore, a non-linear battery model was not a constituent part of the scheduling approach. Moreover, there
was no mechanism in place to extend the scheduling beyond the 36 hour boundary, nor to utilize up-
to-date in-orbit data regarding the battery state. In addition, the overall solution was not prepared
to support challenging inter-satellite linking constraints, as mandated for modern networked satellite
constellations. All of these shortcomings are attacked in the present report of the MISSION project,
together with an efficiency gain in the order of 10 000% – with respect to the maximum horizon limit
sustainable with our tool support.
We present the crucial components of software infrastructure for safe, fully automated, energy-effective,
dynamic, and reward-optimal operation of LEO satellites and satellite constellations, based on [23, 24].
The distinguishing features are:

• The battery abstraction can be either linear or kinetic.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 2/23



Deliverable D1.1:
Inventory of Practice: Resources

• The scheduling is perpetuated by a receding horizon strategy where the underlying model is
continuously improved with the latest telemetry received from orbit.

• Data transfer between different satellites in orbit is accounted for by providing support for schedul-
ing of inter-satellite links.

• The core algorithmic problem is now framed as dynamic programmingwith antichain-based prun-
ing.

• The resulting software framework is directly applied for the automated management and opera-
tion of the GomX–4 LEO mission.

• The approach is carefully crafted to take into account the usability by the space engineers, and
robustness against failures of parts of the tool chain.

• An extensive test campaign validates accuracy, efficiency, scalability, and robustness with respect
to the operational requirements and constraints of LEO constellations.

2 Abstraction: From Space to Algorithmics

This section introduces the core ingredients that make up the abstract algorithmic problem faced, to-
gether with a presentation of the details of our solution to it.

2.1 Battery Models

There are two battery models that are often used as faithful formal representations of energy storage
in satellites. A thorough comparison of state-of-the-art formal battery models can be found in [16].

• The Linear Battery Model (LiBaM) is arguably the most used and simple model of energy storage.
It can be thought of as a well holding fluid which represents the available charge and is drained
(or replenished) proportional to a (time-varying) load `(t) on the battery.

• The Kinetic Battery Model (KiBaM) can be thought of as two interconnected wells holding fluid,
namely the available charge a(t) that is directly affected by a load `(t) on the battery, and the
bound charge b(t), that is not directly influenced, as such representing chemically bound energy
inside the battery. Bound charge is converted into available charge over time (or vice-versa)
via diffusion from one well to the other, proportional to the difference in height in both wells.
The diffusion speed is regulated by a non-negative diffusion rate v. Mathematically, the (two-
dimensional) state of charge (SoC) evolves according to two coupled differential equations ȧ(t) =
−`(t)+v ·

(
b(t)−a(t)

) and ḃ(t) = v ·
(
a(t)−b(t)

), assuming that both wells have the same capacity.
The non-linear dynamics (with respect to the system dynamics, not the differential equations) of
the KiBaM can faithfully account for a number of non-linear effects of in-orbit batteries, like the
recovery effect and the rate-capacity effect [16].

2.2 The Algorithmic Core of the Problem

The algorithmic core of the problem is as follows. We are given a start time t0, an end time th, and a set
of tasks T which we want to schedule on the satellite within the contiguous time interval I = [t0, th].
Each task i ∈ T has a start time s(i) and an end time t(i) which both lie in the given time interval
I, defining a fixed time window [s(i), t(i)) in which i can be scheduled. The task windows reflect
observation tasks or communication opportunities of the satellite. If task i is scheduled, it implies a

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 3/23



Deliverable D1.1:
Inventory of Practice: Resources

load d(i) along the entirety of the time window. This load affects the battery state of charge, it drains
the battery. Tasks can be either scheduled entirely or not at all, i.e., a task cannot be stopped in the
middle of its operation. The battery is replenished by sunlight exposure at known (but practically
aperiodic) intervals representing insolation episodes. The aim is to identify a set T ′ ⊆ T of selected
tasks that form a feasible schedule in the sense that the battery (i) starts off from a given initial state
of charge cinit, (ii) never during interval I drops below a given minimum SoC cmin, and (iii) respects a
given maximum SoC cmax (meaning that the battery cannot be overcharged). Scheduling a task i causes
the SoC to drop within its time window, as a function of the current SoC, the load d(i), and the choice
of battery model. Choosing LiBaM makes cinit, cmin, cmax one-dimensional, while these boundaries and
the SoC itself at any time point are two-dimensional in KiBaM. Some tasks may be mutually exclusive
because they require distinct attitudes of the satellite. Some further optional constraints come in handy,
including the requirement that the SoC at the end of I is above a prespecified threshold, so as to be
able to continue with a new schedule computed under this assumption.
With all this in mind, the empty set is a feasible solution, but of course not an intended one. Instead,
we strive for a feasible set T ′ of tasks that is optimal with respect to a given objective. The obvious and
natural way forward is to ask the space engineers for the reward r(i) accrued by each task i, and for
optimality to select a set T ′ that maximizes the total reward r(T ′) :=∑i∈T ′ r(i).

2.3 Dynamic Programming with Pruning

We now solve the optimization problem above using advanced dynamic programming techniques. The
essence of dynamic programming is to store partial solutions that potentially lead to optimal solutions
in a data structure called the DP table and to explore further based on the entries. Both the running
time and the memory consumption of the dynamic program are determined by the number of entries in
the DP table. It is, therefore, crucial to keep this table as small as possible. As stated, tasks may require
distinct attitudes. Since attitude-conflicts reduce the number of possibilities to be considered simulta-
neously, the problem only becomes more difficult without these. When the DP table is constructed,
entries with conflicting attitudes are simply not added. For the formal exposition of the algorithm we
do not consider them, while they are treated properly in the implementation and in the experimental
analysis. Furthermore, there are the following additional properties which are important for the model.

• There is a given constant background load (needed to keep the satellite operational at any point
in time).

• Some tasks are enforced to be scheduled.

• The satellite battery is charged via solar panels (thus increasing the SoC) during insolation
episodes.

• Scheduling a task i may require additional actions right before or after, for instance, to preheat
a device or to slew the satellite into a certain attitude. We can add the required time to the
time window of i, taking into account that the load d(i) now changes over time (in a piecewise
constant manner).

The first three of these properties determine a load profile within the interval I. Since the load profile is
deterministic and known a priori, it only influences the operation of the DP by altering the SoC-change
within a time interval. Thus its effect can be encapsulated in a function called by the DP without
contributing to state space to be considered. Enforced tasks are not considered in the sequel when
referring to tasks.
The DP for the core problem computes an optimal schedule subject to the given parameters and battery
model. In the following, we assume the KiBaMmodel which is more general than the LiBaMmodel. The

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 4/23



Deliverable D1.1:
Inventory of Practice: Resources

functionality of the DP is inspired by algorithms for resource allocation problems with similar objectives
(cf. [4]). To compute the schedule, we generate a table of solutions depending on the point in time t,
the SoC (ca, cb), and the set of active tasks S, i.e., the tasks running at the given point in time. Formally,
the entries of the DP table are tuples of the form (t, ca, cb, S) that arise as projections of timed system
traces at the relevant discrete time instants.
In particular, we are only interested in those points in time where a change happens, for example,
the start and end of a task (and its preheating/slewing) and changes in the load profile. Thereof,
the DP only has to consider the time points t where a task can start its processing, preheating, or
slewing (whichever is first), because this is where a decision is to be taken. The remaining time points
mentioned above are needed to track the SoC change between time steps considered by the DP. If we
know the set of tasks running at a point in time and the solar infeed, we can compute the total load
of the system. Given the load, the state of battery charge, and the battery model, we can compute the
parameters valid at the subsequent point in time by querying the solution of the KiBaM equations [15]
(which itself needs constant time).
If E is the set of all possible table entries, then a DP table is a subset of E × R+. If for entry e we find
(e, w) in the table, we call the pair (e, w) a DP cell. For a DP cell C = (e, w), we write DP(e) to denote
the value w of the cell. We will construct the DP table so that DP(t, ca, cb, S) is the total reward the DP
can collect until time t (including S) if the SoC is (ca, cb) at time t. For an increasing sequence of time
points, a DP cell C at time ti+1 is compatible with a cell C ′ at time ti if each task that spans both ti and
ti+1 either is contained in the task sets of both cells C and C ′ or in none, the SoC has changed exactly
as computed (using the battery model and loads within the time interval [ti, ti+1)), and in the entire
time interval [ti, ti+1], the SoC stays within the given bounds. (It is here where conflicting attitudes
will force the cell to be dropped.) A DP cell C is reachable if there is a sequence of compatible DP cells
starting from the initial configuration and reaching C.
We use the above insights to fill the DP table as follows. We start from a well-defined initial state of the
schedule at time t0 (e.g., 90% of maximum battery charge and no running tasks). For the initial state,
we store a reward of zero. Let t1 be the next point in time that we have to consider. There is only one
state at t0. We compute the state of charge (ca, cb) at t1 based on the background load, the solar infeed,
and the (possibly zero) elapsed time. We then consider the subsets of tasks available at time t1. From
each scheduled task i, we obtain a reward r(i). For each feasible set of tasks S starting at time t1, we
create a cell ((t1, ca, cb, S), r(S)) in the DP table.
For the subsequent steps, we proceed analogously. At a point in time ti+1, we compute the DP table
entries for ti+1 for each entry of the DP table for ti. Among the obtained entries for ti+1, we only store
those that are compatible with entries for ti. (Note that these conditions are satisfied at t1 since there
are no tasks at t0.) The rewards stored at ti+1 are the sum of the reward at ti and the reward from the
newly scheduled tasks at ti+1; if an entry for the given parameters exists already, we keep the one with
maximum reward. (This forces the DP to represent a functional relation invariantly.) Given the entries
of the DP table for the last time step, we can recursively determine the corresponding schedule. The
computed schedule is feasible by construction, based on the following inductive argument: We only fill
the DP table with cells such that the chosen task-sets are available. At each point in time t, the DP cells
for t can only be filled if the SoC stays within the determined boundaries until t. Since the final results
are chosen at the last possible point in time within the schedule, this property is true for all computed
solutions within the entire instance.
Optimality. Optimality hinges on a specific monotonicity property (enjoyed by KiBaM and hence
LiBaM).
Lemma 1 (Monotonicity). Suppose there is a schedule computed using the DP with task set U and overall
value r(U) which can be reached by the DP from a cell ((ti, ca, cb, S), w). For arbitrary α, β ≥ 0 and an
arbitrary S′ ⊆ S, if the DP cell C ′ = (ti, ca+α, cb+β, S

′) is reachable and DP(ti, ca+α, cb+β, S
′) ≥ w,

then there is a schedule of value at least r(U) obtained by a sequence of DP cells containing C ′.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 5/23



Deliverable D1.1:
Inventory of Practice: Resources

Proof. The lemma follows from: (i) Charging or discharging two identical batteries with SoC (ca, cb),
respectively (ca + α, cb + β) may induce a change in difference in SoC, but the state of charge of the
first battery will never surpass (with respect to the two-dimensional product order, a partial order) the
state of charge of the second battery (which can be proven based on the result [15]). (ii) Since each
task has a non-negative load, the total load of S′ is at most the total load of S. Decreasing the load
leads to an increased state of charge, which is covered by (i). (iii) Independent of the battery model,
if we can obtain a value w′ ≥ w for an intermediate result, the same remaining schedule leads to a
reward of at least r(U) + (w′ − w) ≥ r(U).

We will now show that monotonicity implies optimality of the DP computation.

Lemma 2 (Optimality). The DP algorithm computes a feasible set of tasks Alg such that for all feasible
task sets τ , r(Alg) ≥ r(τ).

Proof. Given an arbitrary feasible solution τ , we show that the DP computes a solution Alg with r(Alg) ≥
r(τ). We encourage the reader to imagine τ to be an optimal feasible solution such that in the end
r(Alg) = r(τ); the reasoning, however, is generic. For a point in time t, let T (t) be the set of tasks
starting before or at t and ending after t. Let τt be τ restricted to all tasks i ∈ τ with s(i) ≤ t. We
inductively maintain the following invariants. At each point in time tj , the DP may select a DP cell C
for tj−1 and a set of tasks S compatible with C in such a way that (i’) at tj , the SoC is at least that of τ
(in both parameters ca and cb), (ii’) S ⊆ τ ∩ T (tj), and (iii’) the total profit of already scheduled tasks
(including S) is at least r(τtj ).
Initially, at time t0, there are no tasks that can be scheduled and the invariant is satisfied vacuously. Let
tj be a point in time such that the invariants are satisfied for tj−1. Let S := τ ∩T (tj) and S′ := S \ τtj−1

(the tasks from τ starting at tj). Let (tj−1, c′′a, c′′b , S′′) be an entry of the DP table which satisfies the
invariants. Then, when choosing S at time tj , the monotonicity property implies (i’). Invariant (ii’) is
satisfied by construction. For invariant (iii’), note that at time tj , we increase the reward by the same
amount as τ , starting from at least r(τtj−1). We conclude that at the last point in time tlast where a task
from τ starts, invariant (iii’) implies that the weight of the computed solution is at least r(τ). Since τ
is feasible, the invariants imply that in all subsequent steps after tlast, choosing the set ∅ is feasible. As
a result, also at the last point in time, we obtain a feasible solution of reward at least r(τ).

Efficiency. The running time and memory consumption of the DP depends on the number of tasks,
the precision of the battery model, and the maximum number of tasks that can be chosen at a single
point in time. In our setup, the number of tasks is limited by the number task types. A task type is a
type operation that can be performed by the satellite like for example sending data or recording videos.
For each task type, we only have the choice to use it at a given point in time or not to use it.

Lemma 3 (Efficiency). Let n be the total number of tasks, cmax the range of capacities in the battery model
(for a single parameter ca in the LiBaM model and for two parameters (ca, cb) in the KiBaM model), and
k be the number of different task types. Then both the memory consumption and running time of the DP is
bounded from above by O(n) · c2max · 2k in the KiBaM model and by O(n) · cmax · 2k in the LiBaM model.

Proof. The running time of the dynamic program is dominated by the size of the DP table. It is therefore
sufficient to analyze the number of entries, which asymptotically implies both a matching memory
consumption and running time. Recall that the number of considered time steps is O(n), since each
task only contributes a constant number of changes. There are c2max possible states of charge. Finally,
the number of subsets of tasks is limited to 2k since at each point in time, at most one task of each type
is available. The size of the DP table is therefore bounded from above by O(n) · c2max · 2k entries using
the KiBaM model and O(n) · cmax · 2k using the LiBaM model.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 6/23



Deliverable D1.1:
Inventory of Practice: Resources

In our setup, the parameters ca and cb have the precision of mJ, which together with the upper and
lower bounds on the SoC determines the range of capacities. In the application of the DP which we
will consider later, there will be k = 4 different types of tasks and therefore at most 24 = 16 different
subsets of active tasks to be considered at each point in time. Thus if cmax is polynomial and k is a
constant (both being natural assumptions), the size and the running time are polynomial. In practical
terms, however, the number of possible entries is prohibitively large. In order to control the size, we
use the following two insights.
(i) In realistic scenarios, we can expect the DP table to be sparse: most of the potential entries stay
empty. Instead of a multi-dimensional array, we therefore use nested hash tables.1 Since writing and
reading from a hash table can be done in amortized constant time, the asymptotic performance of the
algorithm stays the same. We use, however, only the space needed for the computation.
(ii) An entry in the DP table can be dominated by another entry. For example, if all parameters are the
same except for the first parameter of the battery capacity, the entry with higher capacity cannot be
worse than the other one. More generally, the entries of the DP table form a partial order and we only
have to keep the antichain formed by the top elements of the separate chains. The algorithm includes
a pruning step which repeatedly removes the unnecessary entries. More precisely, given a time point t,
after computing all DP cells for t, we remove those cells that are strictly worse than other existing cells.
We describe the pruning in more detail in the following.
Pruning. Let us consider a point in time ti and all DP cells (ti, ca, cb, S) at time ti, where (ca, cb)
is the KiBaM SoC and S is the set of selected tasks. For each such cell, we have stored a value w :=
DP(ti, ca, cb, S). In order to lower the number of considered DP cells, we have a closer look at the values
ca, cb, S, and w.
The insights from the monotonicity properties discussed in the optimality proof (Lemma 1) lead to the
following partial order of tuples (ca, cb, S, w). We have (ca, cb, S, w) ≤ (c′a, c

′
b, S
′, w′) if simultaneously

c′a ≥ ca, c′b ≥ cb, S′ ⊆ S, and w′ ≥ w holds. If neither (ca, cb, S, w) ≤ (c′a, c
′
b, S
′, w′) nor (c′a, c′b, S′, w′) ≤

(ca, cb, S, w), these tuples are incomparable. We note that this order is closely related to a product order.
In a product order, however, we compare tuples of linearly ordered sets. While in our case, the entries
for the state of charge and the reward are linear orders, the subset relation of the task sets is a partial
order itself.
Our pruning applies the partial order defined above as follows. For each pair of DP table entries
(ti, ca, cb, S) and (ti, c

′
a, c
′
b, S
′) of the DP table with DP(ti, ca, cb, S) = w and DP(ti, c′a, c′b, S′) = w′,

if (ca, cb, S, w) ≤ (c′a, c
′
b, S
′, w′), we remove (ti, ca, cb, S); if (ca, cb, S, w) > (c′a, c

′
b, S
′, w′), we remove

(ti, c
′
a, c
′
b, S
′); if (ca, cb, S, w) and (c′a, c

′
b, S
′, w′) are incomparable, we keep both entries.

For each chain of the partial order, we only have to keep the top-most element. The set of the top-
most entries of all chains forms an antichain. We, therefore, obtain an upper bound on the number of
DP table entries if we analyze the width of the largest antichain in the partial order. To this end, we
consider S separately. In our concrete setting, we will need to distinguish only a small number k of
task types. For our concrete use case (discussed below), k = 4 which has the implication that at each
point in time, there are less than 24 = 16 choices of sets S.
Only considering the remaining tuple, we are left with a product order. Let cmax be the number of
different possible states of charge of ca, cb, and let rmax be the total number of possible different rewards.
In our setting, we have cmax � rmax. De Bruijn et al. [10] and Griggs [14] provide mathematical results
that allow us to upper bound the width of antichains in product orders. The number of incomparable
tuples is bounded from above by cmax ·rmax if we use the KiBaM model and by rmax if we use the LiBaM
model. Together with the subsets of S with k = 4, after the pruning there are at most 16 · cmax · rmax

and 16 ·rmax DP table entries per time step, respectively. The pruning, therefore, reduces the worst-case
time and space demand by a factor of rmax/cmax.

1In the implementation of the algorithm, we use Python dictionaries, which are implemented using hash tables.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 7/23



Deliverable D1.1:
Inventory of Practice: Resources

d)c)b)a)

GomX-4CGomX-4B

Greenland

Aalborg

ISL

HSC HSL

Visibility
tracks

Figure 1: GomSpace mission scenario situations: (a)GomX–4B can establish an ISL contact withGomX–
4C and also use HSC to capture images from Greenland territory; (b) Aalborg communication range
does not allow to establish an UHF or HSL link with GomX–4B at this moment; (c) GomX–4B trajectory
indicating a contact with Aalborg in the next seconds; and (d) ISL opportunities highlighted over the
North and South Poles.

3 Concretization: Computations Driving Space

There are a number of software tools and software libraries for mission planning, analysis, and oper-
ations in daily use in the LEO domain worldwide, among them STK [1] (commercial, most powerful,
most expensive), GMAT [20] (developed by NASA, open-source), Orekit [22] (platform-independent
library, open-source), and FreeFlyer [13] (commercial). All of them are orbit-proof by a multitude of
successful space missions, yet none of them supports battery-aware scheduling. Still, they have other
important functionalities, especially with respect to predicting orbital dynamics and planning spatial
trajectories, accessible through programming interfaces. We now describe howwe leverage their proven
reliability as part of a workflow that seamlessly integrates our core innovation, and applies this to a
satellite configuration currently in orbit.

3.1 The GomX–4 Mission

Since early 2018, the twin satellites GomX–4A and GomX–4B (6 liters each) are on a research and
development mission in orbit. They together are demonstrators of key enabling technologies for fu-
ture nano satellite constellations. The overall GomX–4 mission focuses on demonstrating miniaturized
technologies, namely orbit maintenance, inter-satellite communication, high speed downlinking, and
advanced remote sensing. These are considered key building blocks for a controlled deployment, op-
eration, and maintenance of a future CubeSat-based Arctic surveillance constellation. The concrete
application context of the mission is that of collecting observation and remote sensing data over the
Greenland territory to deliver it to a ground station located in Aalborg, Denmark.
Payloads. The payload of the GomX–4B satellite is composed of the battery and a number of sensors
and therefore determines the possible tasks which the management software can schedule.

UHF Link The UHF Link enables communication betweenGomX–4B and the ground station at Aalborg.
Telemetry and telecommands (i.e., flight plans) are transferred via this link.

Hyper-Scout Camera The Hyper-Scout Camera (HSC) is an imaging device that is used to observe
the Greenland territory.

High Speed Link High Speed Link (HSL) serves as a fast connection to the ground station at Aalborg,
used to transfer acquired data to ground.

Inter-Satellite Link The Inter-Satellite Link (ISL) enables data transfer between the GomX–4 twins
and other satellites close enough and able to communicate in S-Band.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 8/23



Deliverable D1.1:
Inventory of Practice: Resources

TLE
Database

SafeguardOrchestrator

Scenario (.czml)

Flight Plan
API

Telemetry
API

Aalborg GS

NTK
plugin

STK

Scheduled
accesses

(.csv)

Accesses

(.csv)

Telemetry
(.json)

Flight plan
(.json)

propagator
filter &
Kalman

scheduler

DP

H
S C

am
era

H
SL (A

alborg G
S)

GomX-4C
satellite

GomX-4B
satellite

Voltage (t)
Current (t)GomX-4B

TLE

SoC
at t0

t0 t

Pred.
load

Real
load

Telemetry available

[J]

[V]

[W]

SoC

dcharge

charge

Real
battery

SoC
at t0

current
time

PropagatorKalman filter
next
pass

prev.
pass

(over the poles)

ISL

GPS

Real-time debug

Cesium 3D view

Schedule time line

Telemetry summary

Project information

GPS visibility

ISL visibility

Greenland visibility

Aalborg visibility

Sunlight exposure

from t0

to th

from t0

HSL - HSC - ISL - GPS

Web
App

generation
Window

Figure 2: The tool chain integrated into the GomSpace mission operations API.

Global Positioning System The Global Positioning System (GPS) payload enables GomX–4B to receive
GPS satellite location signals to determine its precise local position.

UHF is enabled whenever Aalborg is in line-of-sight, so it can be considered as a recurring back-
ground load on the battery, similar to sunlight exposure (but with opposite effects on the battery).
ISL transceivers are installed on board for gaining experience with data transfer between satellites,
whenever possible over the poles. The restriction to over-the-pole episodes is rooted in the necessity
to comply with international radio frequency regulations regarding the use of S-Band over inhabited
regions.
Scenario. The concrete scenario we consider consists of the GomX–4B satellite and an imaginary
satellite GomX–4C acting as a receiver/transmitter of data in the constellation. The latter is placed
in orbit in such a way that the resulting communication opportunities are non-trivial to plan for. For
this, the GomX–4C satellite is shifted in RAAN angle and mean anomaly by 10° each, with respect to
GomX–4B. The RAAN angle indicates the angle of the orbital plane in the equator, while the mean
anomaly stands for the position of the satellite along the trajectory in the orbit. As illustrated in Fig. 1,
the resulting configuration renders two satellites that separate maximally at the equator and become
aligned in an along-track configuration as they come close in the poles. It is in this condition that the
inter-satellite distance is minimal, and the inter-satellite link antennas become aligned. As a result, ISL
transmission between GomX–4B and GomX–4C is only possible during over-the-pole episodes. Thereby,
potential interference with ground radio-frequency services operating on S-Band in populated regions
is avoided. The scenario can be chained up to arrive at larger satellite constellations with non-trivial
communication opportunities. Since future GomSpace missions will exploit ISLs for continuous net-
worked operation, interdependency in data flow models are appealing extensions of the present work,
where scalability is to be considered in terms of satellite fleet and orbital parameter diversity.

3.2 Architecture of the Tool Chain

The tool chain we developed is tailored to the very stringent requirements of the LEO domain, where
efficiency, ease-of-use, reliability, and robustness are of prime importance. The overall architecture is

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 9/23



Deliverable D1.1:
Inventory of Practice: Resources

presented in Fig. 2.
The tool chain is controlled by a simple push of a button that triggers the planning procedure to deliver
an optimal schedule for time t0 if pushed at a preceding current time. Pushing the button triggers a
telemetry fetch and the computation of the flight plan with a horizon th covering well beyond the next
satellite pass. While it would be very straightforward to mechanise the button-pushing events, the
push-button approach enforces the presence of a human operator to oversee and safeguard the entire
chain. Indeed, we have invested in visualization support to enable the operator to grasp the various
outcomes. While the operator is the external authority overseeing the approach, the Orchestrator acts
as the central coordinator of the automatized process within the tool chain.
Orchestrator. The Orchestrator takes care of coordinating the availability of up-to-date information
within the tool chain. In particular, it interfaces with the satellite operator’s API in order to receive
the latest telemetry of the satellite. The telemetry (logs of voltage and current measurements of the
satellite’s battery) is fed to the Kalman filter, and the flight plans provided by the DP module are
transferred into the required format and delivered to the satellite operators’ API, after being checked
by the Safeguard module.
Dynamic Programming. The Dynamic Programming module receives the access windows regarding
HSL, HSC, ISL, and GPS (so k = 4, as previously mentioned), together with the background load and
state of charge estimates regarding the battery at t0 (the beginning of the scheduling interval I). As
discussed in Section 2.3, it delivers an optimal set of tasks to schedule, assuring that the battery stays
above a minimum SoC. It can be configured to recover a higher charge by the end of the scheduling
horizon th.
Kalman Filter & Propagator. Receding-horizon scheduling is a well-known approach [9] to perpetu-
ate finite-horizon scheduling. Our instantiation of the receding-horizon principle is visualized in Fig. 3.
In a nutshell, we work with schedules of 24 hours in length, that are replaced whenever the satellite
passes over the ground station. The time span between any two consecutive passes lies somewhere
between 90 minutes and 15 hours. Computing a flight plan takes about 2 minutes on average.
This process is combined with the incorporation of in-orbit measurements into the battery model [7],
displayed in the upper left of Fig. 2. The SoC of the battery at the beginning of the scheduling period
is obtained by means of a Kalman filter combined with a propagator. The Kalman filter exploits the
available telemetry of the satellite to properly estimate the real load the battery was feeding energy
to, and the battery voltage that is used to correct (filter) the estimated SoC during the period. Both
battery voltage and current telemetry are sampled on the satellite, which together can be used to
determine the output and input load of the battery at least once every two minutes (apart from gaps in
the downlinked data due to storage and transmission problems). By means of current integration (a.k.a.
Coulomb counting), the evolution of the stored energy can be properly approximated and the actual
SoC at the end of the telemetry period be determined while learning adjustments to the battery model
parameters via Kalman filtering [7]. Next, the propagator operates for the period when no telemetry is
available and propagates the battery SoC using the predicted (scheduled) load and the battery model.
At the end of the process, the SoC at time t0 is made available to the DP scheduler.
Window Generation. The STK module interfaces with STK [1] to leverage state-of-the-art orbital
propagators. The module extends the Network Toolkit Plugin (NTK) [11] to interface with a database
to obtain the latest orbital parameters of the twin satellites. In this, the Two-Line Element (TLE) for-
mat [19], which encodes in two lines of text all the necessary Keplerian parameters defining the orbit
of the satellites is leveraged. Furthermore, the plugin computes the corresponding TLE of the imagi-
nary GomX–4C satellite, based on the actual data for GomX–4B with RAAN angle and mean anomaly
shifted by 10°. Afterwards, STK’s built-in Simplified General Perturbations 4 (SGP4) algorithm is used
to propagate the trajectories of both satellites into the future. SGP4 is based on accurate analytical
and numerical methods considering perturbations caused by the Earth’s shape, drag, radiation, and

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 10/23



Deliverable D1.1:
Inventory of Practice: Resources

upload flight plan 1
backup plan

flight plan 1 starts

24 hrs. horizon
flight plan with

Pass 4Pass 3Pass 2Pass 1
~15 hrs.

to
~90 min

upload flight plan 2

(~2 min)
compute

filter
predict &

download
telemetry backup plan

flight plan 2 starts
ready

flight plan 2

t0

tht0

transition period
flight plan

upload flight plan 3
download
telemetry

flight plan 3 starts
t0

(replaces flight plan 1)

Figure 3: Receding-horizon scheduling along different passes over the ground station. The computed
flight plan extends well beyond the needed time horizon as a backup plan in case the next update fails.

gravitation effects from other bodies such as the sun and moon [26].
The resulting trajectories are enriched by sensors mimicking the antenna and camera coverage of each
payload in GomX–4B. According to GomX–4B specifications, a conic HSL sensor is configured with
2000 km maximum range and 65° of half-angle pointing in the nadir direction (to ground), a conic ISL
sensor with 1300 km of range and auto-tracking to the GomX–4C satellite is placed in the along-flight
direction, and a rectangular HyperScout sensor mimicking the camera is placed also in the nadir direc-
tion with 16° and 23° of across and along angles respectively. Finally, we model the Greenland territory
by a polygon composed of 15 latitude and longitude points and set the ground station location in Aal-
borg to the actual site of the GomSpace station at 49.23° and 6.98° latitude and longitude coordinates.
The Aalborg ground station considered with a sensor of 70° of half-angle and 2000 km of maximum
range standing for the HSL downlink antenna.
Based on the aforementioned STK scenario, the plugin is able to compute relevant accesses. We care
about sunlight access for GomX–4B satellite, to model the time episodes in which the on-board batter-
ies are charged. Sunlight exposure is computed internally in STK using accurate planetary dynamics
and exported to the DP model in the form of simple tables indicating the start and end time of each
exposure episode. Also, we capture the contact windows between the two HSL sensors on the flight seg-
ment (GomX–4B) and the ground segment (Aalborg ground station), standing for high-speed downlink
tasks. Next, visibility conditions between the HyperScout camera and Greenland territory are stored
as potential camera tasks. Finally, ISL tasks can occur only when the ISL sensor on GomX–4B can point
to GomX–4C on a distance no larger than 1300 km. Depending on the small orbital variations, these
episodes last around 20 minutes as both satellites orbit over the North and South poles. Since the
power demand of the ISL payload is considerable, we allow for intermittent utilization of the resource.
To account for this, the ISL windows are partitioned into 8 smaller chunks of 160 seconds each.
The STK script also generates a .czml file containing the resulting scenario which is then fed to the
Web App which includes a Cesium plugin to visualize a 3D interactive view accessible via any web
browser. Finally, a socket interface was put in place on STK to deliver the resulting set of window files
containing the accesses to the DP scheduler in .csv format. All the described process is fully automatic
and requires no human intervention whatsoever.
Safeguarding. The Safeguard module takes care of a number of plausibility checks and safeguarding
mechanisms. This is important because a satellite in orbit is a very precious asset, and any risk of
damage or loss needs to be avoided. The safeguarding pertains to two dimensions, namely the contents
of the flight plan itself, and the time at which it is ready for upload.
With respect to the former, each flight plan is checked with respect to the following four questions
before uploading it to the satellite:

• Are tasks being scheduled only at time intervals in which they are indeed possible?

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 11/23



Deliverable D1.1:
Inventory of Practice: Resources

• Are background loads, including sunlight exposures, accounted for only at time intervals in which
they are indeed present?

• Are the mutual exclusion constraints, preheating, and slewing actions respected?

• Is the predicted battery behavior indeed safe?

The former two checks are very simple to implement by referring to the original access windows. We
check the first three altogether by running the flight plan through a timed automata representation
(in UPPAAL [18]) of the GomX–4 scenario, parametrised with the access windows. This harvests the
excellent readability of the automaton representations, and can be performed in simulation mode, thus
without running into memory exhaustion issues.
The last item of the above list is tackled by a stand-alone implementation of the KiBaM, on which we
simulate the load induced along the flight plan while ensuring the SoC does not drop below the config-
ured threshold. By its nature, the KiBaM is more accurate and more pessimistic than the corresponding
LiBaM, therefore this check is meaningful and valuable even if the schedule has been computed on
LiBaM.
The other dimension of safeguarding relates to the time sensitivity of the tool chain. In essence, we
expect the computation to finish swiftly so that the new flight plan is ready for upload before the
subsequent pass of the satellite. Indeed this takes (cf. Section 4) about 2 minutes on average, but
this is not at all guaranteed. We want to compute a schedule for one day with n potential tasks. In
our setting, each task i has a reward r(i) in the order 300 on average. There are at most k = 4
simultaneously available tasks per time step, and cmax different possible values of each of the two
KiBaM parameters. Using our analysis from Section 2.3, we conclude that the DP module has an upper
bound of O(n2) · cmax on the number of entries. We even have the concrete guarantee that the constant
factor in the Oh-notation is at most in the order of 10 000. However, already for a one day schedule, this
is a prohibitive number since n is roughly 500 and cmax is in the order of 140 000 000; even when using
the LiBaM model where we save a factor of cmax, we cannot exclude reaching the limit of available
memory – and worse: time.
To account for this problem, we consider any push-button event as failed if the resulting flight plan is
not available ten minutes before the pass. We keep an empty flight plan as fall-back on the satellite.
However, we do revert to that only if we are approaching the end of the planning horizon th, which
means that we must have witnessed consecutive failures of the chain. In light of the fact that each flight
plan computed covers 24 hours, this is truly meant as a safe fall back for exceptional cases. Section 4
will explore this strategy in practice.
Web App. In order to visually inspect the status and decision taken by the tool chain, a Web App
is leveraged. During the planning process, the Orchestrator acts as a back-end by updating (a) the
scenario file obtained from STK, (b) the schedule produced by the DP, and (c) the latest telemetry
obtained from the satellite. The Web App integrates a 3D scenario visualizer based on Cesium [8] to
easily grasp the dynamics behind the schedule computed by the tool. The schedule is presented in a
timeline view and the telemetry is plotted using ApexCharts [3].
Telemetry and Flight Plans API. The tool chain interfaces with the satellite constellation operation
center by means of standard API formats. Although GomSpace made available a specific .json format
both for telemetry and flight plan commands, the tool chain can be easily adapted to other structures.
In particular, the telemetry reports the battery voltage and input/output current, while the flight plan
is an array of time intervals on which each of the satellite payloads should be enabled. In any case, this
interfacing happens through a secured VPN connection.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 12/23



Deliverable D1.1:
Inventory of Practice: Resources

HSLB

HyperScoutB

ISLB

GPSB

SunB

0.6

0.7

0.8

0.9

1.0

0

5000

10000

HSLB

HyperScoutB

ISLB

GPSB

SunB

0.6

0.7

0.8

0.9

1.0

01.
01.

00:
00

01.
01.

06:
00

01.
01.

12:
00

01.
01.

18:
00

02.
01.

00:
00

02.
01.

06:
00

02.
01.

12:
00

02.
01.

18:
00

03.
01.

00:
00

0

5000

10000

Different ISL 

chunks scheduled

GPS task not

scheduled in KiBaM

HSLB

yperScoutB

ISLB

GPSB

SunB

0.6

0.7

0.8

0.9

1.0

Battery Load [mA]

Battery Load [mA]

Available Charge [%]

Available Charge [%]

Bound Charge [%]

SkippedScheduledSunlight exposure

Figure 4: Accuracy evaluation: example schedules for the LiBaM (top) and KiBaM (bottom) models.

4 Evaluation on Recorded Telemetry

In this section, we present the evaluation results of a thorough test campaign designed to assess the
accuracy, efficiency, scalability, and robustness of the tool chain. The presented outcomes are framed in
the context of the scenario comprising GomX–4B and GomX–4C illustrated in Fig. 1. All measurements
have been performed on a Linux machine, equipped with an Intel Core™ i7-4790 CPU running at
3.60GHz and 32GB of main memory. Telemetry data from the 2018-2019 time-frame is used in our
studies, because real orbital data from TLEs is already publicly available, enabling the computation of
the true access windows of the satellite.

4.1 Accuracy

Compared to the LiBaM, the KiBaM is known to be a more accurate representation of battery dynamics.
Thus far it was not possible to perform battery-aware satellite scheduling using the KiBaM. To shed light
on this, we present here the results of an (in retrospect) challenging instance. We run our case study in
a 2 day horizon (1 Jan 2019 00:00–3 Jan 2019 00:00) with v = 0.0015 with an initial SoC of 90% and
a minimal SoC of 55%, and no need to recover a higher charge by the end of the scheduling horizon.
We obtain the results presented in Fig. 4 for both battery models. The top rows of the two charts each
indicate the sunlight exposure episodes and payload utilization windows. Payload windows chosen by
the DP to be executed in orbit are highlighted in blue, or gray if skipped. Notably, ISL opportunities
are actually 8 equal-sized, independent, and consecutive chunks. The second rows of the two charts
display the evolution of the battery SoC. In the case of LiBaM this is just a single plot, while the SoC in
KiBaM consists of available (blue) and bound (red shaded) charge values, as discussed in Section 2.1.
In the bottom of each chart, the battery loads in terms of the electric current flow at each point in time
are depicted. As expected, the more tasks are scheduled, the more the battery is stressed.
The computed schedules differ in some places, but if one looks at the total task counts being scheduled,
the quantitative difference is that the LiBaM model can sustain 48 GPS tasks, one more than the KiBaM
can sustain. Since both problems are solved optimally, and the respective profits differ, this means that
the LiBaM-induced solution will violate the battery constraints if run on the KiBaM, and indeed this

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 13/23



Deliverable D1.1:
Inventory of Practice: Resources

0h 1h 2h 3h 4h 5h 6h
0:00m

1:00m

2:00m

3:00m

4:00m

0GB

1GB

2GB

3GB

4GBTime (DP-LiBaM)
Time (DP-KiBaM)
Time (TA-LiBaM)
Memory (DP-LiBaM)
Memory (DP-KiBaM)
Memory (TA-LiBaM)

Figure 5: Efficiency evaluation: running time and
memory utilization of the TA and DP approaches
with a scheduling horizon of up to 6 hours.

0h 4h 8h 12h 16h 20h 24h
0:00m

0:20m

0:40m

1:00m

0MB

16MB

32MB

48MBTime (DP-LiBaM)
Time (DP-KiBaM)
Memory (DP-LiBaM)
Memory (DP-KiBaM)

Figure 6: Efficiency evaluation: running time and
memory utilization of the DP scheduler up to a 24
hour horizon with LiBaM and KiBaM models.

0d 20d 40d 60d 80d 100d
0:00 h

2:00 h

4:00 h

6:00 h

8:00 h

10:00 h

12:00 h

0GB

2GB

4GB

6GB

8GB

10GB

12GB

14GB
Time (DP-LiBaM)
Time (DP-KiBaM)
Memory (DP-LiBaM)
Memory (DP-KiBaM)

Figure 7: Scalability evaluation: running time and memory utilization of the DP scheduler up to a 100
day horizon with LiBaM and KiBaM models.

violation is confirmed by running the LiBaM solution on our stand-alone KiBaM. The case is challenging
mainly because it is beneficial to operate close to the minimum SoC for some time, and it is here where
the bound charge in the KiBaM prevents certain options that are possible in LiBaM. This phenomenon
obviously depends on the rate v. Furthermore, it turns out that inmany other circumstances, the LiBaM-
optimal schedule is KiBaM-optimal, too, especially if it is enforced to end up with a higher charge by
the end of the scheduling horizon. Concretely, for the scenario we shall fly in space (stay above 55%,
return to 80%), the optimal values in our experiments so far did always agree. Note that prior to our
tool chain, it was impossible to study this question.

4.2 Efficiency

We first study the efficiency of the DP approaches (DP-KiBaM and DP-LiBaM) in comparison with the
battery-aware scheduling approach based on cost-optimal reachability analysis in priced timed au-
tomata [21, 7] and LiBaM. The latter (TA-LiBaM) has been applied in the GomX–3 context and can
be viewed as the state-of-the-art baseline. We here consider it adapted to fit precisely the GomX–4

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 14/23



Deliverable D1.1:
Inventory of Practice: Resources

scenario, and solve it using the UPPAAL CORA tool [6, 25].
Results for running time and memory utilization of TA-LiBaM, DP-LiBaM, and DP-KiBaM, are presented
in Fig. 5. For increasing scheduling horizon th, the timed automata approach quickly exhausts the
available 4GB of memory (limited by the 32-bit code architecture of UPPAAL CORA). For shorter hori-
zons, the solution time of TA-LiBaM increases notably w.r.t. the DP executions, reaching more than
4:20 minutes when the same instance is completed in less than 5 seconds by the DP. Thus, the DP not
only outperforms the state-of-the-art methods in accuracy, but also by several orders of magnitude in
terms of processing performance.
Next, we look closer into the efficiency spectrum of the DP when using LiBaM and KiBaM models. The
measured running time for computing the LiBaM solution for the scenario in Fig. 4 is 2 minutes, while
for KiBaM it is 13 minutes. To get a deeper understanding of the difference, we study the accuracy
and computation time trade-off between the two battery models supported. In other words, we care
about the practical implications of a more accurate (and computationally more demanding) model,
and compare the measurements of calculation time and memory utilization of the DP module when
executed on each of the models.
The results in Fig. 6 compare the running time and memory consumption of the DP module when
calculating a flight plan for the same 24 hour time period using the linear and kinetic battery model with
v = 0.005. In this case, we start and end at 80% SoC. The minimum threshold is set to 55%. While the
LiBaM schedule is delivered in 36 seconds, the KiBaM processing terminates in 1:10 minutes, so 100%
slower. The graph represents the internal behavior of the DP with respect to resource consumption,
focussing on one of the dimensions of the DP table, namely the time progression within the considered
time window. The x-axis of the graph reflects these values. The y-axis depicts the amount of resources
(time/space) used for filling all relevant cells of the DP table until the point in time of the x-axis.
Therefore, an increase in the gradient reflects an increased number of DP-cells filled per scheduled time
step. The DP table size enables an indirect estimation of the search space of the DP which in turn is
strictly related to the actual system memory consumption of the algorithm. We find that the latter is
almost twice the size consumed by the DP table data structure.
Notably, the profit obtained with KiBaM and LiBaM turns out to be identical here, and this is a phe-
nomenon that we observed often in cases where it does not appear profitable to operate close to the
minimum charge.

4.3 Scalability

In order to understand the practical limits of the tool, we stretch the scheduling horizon way beyond
one day and measure the required time and memory resources. This experiment allows us to determine
up to which extent longer time frames can be spanned by a schedule, and thus can be considered for
cases where future flight plan update opportunities are sparse or cannot be used.
The results in Fig. 7 show the development of the running time and memory consumption within a run
of the DP for a time horizon of 100 days for both LiBaM and KiBaM, starting on 1 Jan 2019. The setup
is the same as in Section 4.2. The graph confirms our previous conclusion, namely that the KiBaM
scheduling is slower by factor two and more memory intensive. The memory consumption coincides
with the number of entries in the DP table. In particular, the DP cannot remove entries from previous
time steps, since they are needed to compute the actual schedule after reaching the last time step. The
graph reflects, for both battery models, the expected monotonous increase of the memory consumption
over time where the interesting aspect is the rate of increase. There is a first phase where the increase
resembles an exponential function (quite short, see Fig. 6). The reason for that is that in the almost
empty DP table, almost all choices at a given time step lead to new entries at the subsequent time
step. Afterwards, the function resembles a piecewise linear function. We conclude that eventually, the
number of new choices gets saturated in the sense that there is a large number of choices that have

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 15/23



Deliverable D1.1:
Inventory of Practice: Resources

2018 Apr Jul Oct 2019 Apr Jul Oct 2020

2min

4min

6min

8min LiBaM

2018 Apr Jul Oct 2019 Apr Jul Oct 2020
32MB

64MB

96MB

128MB LiBaM

Figure 8: Robustness evaluation: running time (top) and estimated memory consumption (bottom)
measured during a 2-year operation period, using DP-LiBaM.

matching parameters within the table or that are sorted out in the pruning phase. A roughly identical
number of new entries per time unit gives a linear function in the graph. There is a sudden increase
in the rate of memory-consumption at day 45 and another one at day 66. While the reason for the
sudden increase is unclear, it is consistent with our other measurements where at certain intervals of
the input data, the running time and memory consumption of the DP spike (see Fig. 8, first spike in
2019). Such a spike would have exactly the observed effect: the additional options lead to an increased
set of incomparable DP table entries. For each of these entries, the DP has to compute follow-up results,
since it will be clear only later whether the entry is needed or not. Therefore, after an increase of
DP-states at one point in time, also the number of new entries per time unit increases.
Notably, applying the approach from earlier work using the LiBaM and priced timed automata [7] to
this scenario struggles to schedule more than 6 hours of our scenario, due to memory exhaustion. The
tool therefore gives us at least a 400-fold improvement over that work.

4.4 Robustness

For the particular receding horizon case of the GomSpace mission, the quantitative difference between
the LiBaM and KiBaM turns out to be negligible. This is rooted in the safety-margin condition imposed
by GomSpace for the battery SoC: start at 80%, end at 80%, and never drop below 55%. This does not
stress the battery to the point where the KiBaM accuracy actually pays off during scheduling. (Note
that the KiBaM is used during safeguarding anyhow.)
The objective of the robustness evaluation is to validate that the receding horizon approach is indeed
suitable for the fully automated operation of the GomSpace mission. To this end, we run an extended
and accelerated analysis of the tool as if it had been operating the GomX–4B and GomX–4C satellites
over a two year period spanning 2018 and 2019. In this context, we compute the sequence of contact
plans pass-after-pass of the satellite over the ground station.
During the experiment, we measure the running time of each DP run. This is the core computation
step of the tool chain. The approximately 90 minutes orbital period – minus 10 minutes safeguarding
– must not be exceeded, such that a schedule is always computed before the next flight plan upload
opportunity. Again, we track the memory utilization by means of the number of entries in the DP table.
The results of the test campaign are plotted in Fig. 8. A total of 1125 schedules are computed throughout

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 16/23



Deliverable D1.1:
Inventory of Practice: Resources

a year. The tool is able to consistently deliver schedules within less than 22 minutes, however with some
perceivable variance at places. The spikes in resource consumption are rooted in peculiarities of the
exact time alignment of the different schedulable tasks. Such alignments are correlated for consecutive
days.
On average, the schedule is ready to upload in less than two minutes. The memory consumption of the
DP table is always below 700MB, and in the order of 200MB on average. These results confirm that the
tool chain can be safely used to manage the GomX–4 mission. Indeed the safeguarding mechanisms
never kicked in, meaning that neither was a flight plan delivered that violated any of the constraints,
nor was the minimum time window of 80 minutes ever close to getting too short.

5 Empirical Evaluation in Orbit

This section presents the empirical evaluation results of a thorough test campaign where GomX–4A
has been operated by our toolchain. During a period spanning from April 12 to May 14, a variety of
different in-depth experiments were carried out in orbit.

5.1 Scenario Set-Up

This evaluation was performed in the same mission scenario already mentioned in Section 3.1. In the
following, we only add some more technical details.
ISL tasks are allowed to occur only when the ISL sensor on GomX–4A can point to GomX–4C on a
distance no larger than 1300 km. Depending on the small orbital variations, these episodes last around
20 minutes. Since the power demand of the ISL payload is considerable, we allow for intermittent
utilization of the resource. To account for this, the ISL windows are partitioned into three smaller
chunks of 7 minutes each.
Flight plans are usually uploaded via the UHF link during passes over the ground station in Aalborg.
Since the process of swapping the flight plan needs exclusive access to the satellite, and to make the
scenario more interesting, we introduce two different ground stations to the scenario that are used to
downlink collected data via HSL: Teófilo Tabanera Space Center in Córdoba, Argentina (31°31′30′′S,
64°27′46′′W) and Svalbard Satellittstasjon in Svalbard, Norway (78°13′47′′N, 15°24′28′′E). According to
GomX–4A specifications, a conic HSL sensor is configured with 2000 km maximum range and 65° of
half-angle pointing in the nadir direction (i. e., to ground) while the HSL downlink antennas of the two
ground stations in Córdoba and Svalbard are modeled each by a sensor with a half-angle of 70° and
maximum range of 2000 km.
The NanoCam is modeled by a rectangular sensor pointing in nadir direction with 16° and 23° of
across and along angles, respectively. Visibility conditions between the NanoCam and the Greenland
territory—that is modeled by a polygon—are stored as potential camera tasks.
Finally, GomX–4A is configured to use its ADS-B receiver to track aircraft only when orbiting over
the Atlantic Ocean, where coverage with terrestrial antennas is difficult. While the Atlantic is again
modeled by a polygon, the ADS-B receiver has no attitude constraints of interest and uses a simple line
of sight constraint.
To comply with radio frequency regulations, no real data other than the satellite’s telemetry was trans-
mitted using HSL and ISL during the experiments. This was realized on the satellite by configuring
the radio module to not use the power amplifier (PA) connected to the antenna. To compensate for
the energy consumption of the PA, the GPS payload was simultaneously activated during HSL and ISL
tasks.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 17/23



Deliverable D1.1:
Inventory of Practice: Resources

Table 1: Experiment Summary.

Start of Schedule Max El. Status
May 10, 00:57 85.85° � Executed
May 10, 13:50 36.22° � Executed
May 10, 15:23 28.42° � Executed
May 11, 00:34 53.59° � Executed
May 11, 15:01 44.67° o Backup Plan

� – flight plan successfully uploaded
o – upload failed, but earlier plan continued

10
.05

. 0
0:5

7

10
.05

. 1
3:5

0

10
.05

. 1
5:2

3

11
.05

. 0
0:3

4

12
.05

. 0
0:3

4

11
.05

. 1
5:0

1

Pass
1

Pass
2
Pass

3
Pass

4
Pass

5

flight plan 1

flight plan 2

flight plan 3

flight plan 4

Figure 9: Experiment overview with the four uploaded flight plans.

5.2 Evaluation

The entire time of exclusive experimental access to GomX–4 spanned a period of 758 consecutive hours
in which GomX–4A was operated by the toolchain. In the following, we are focusing on two days
from our experimental case study. Starting on May 10, 2021, at 00:57, five Aalborg ground station
passes were targeted for the consecutive upload of flight plans. To obtain a reliable uplink, only passes
with a maximum elevation higher than 25° were considered. This means that five schedules were
made available in total, each having a scheduling horizon of 24 hours. The precise timings when each
schedule became valid are listed in Table 1.
Toolchain in Action. Out of the five flight plans, four were uploaded successfully to the satellite.
The last plan suffered from transmission issues on the ground segment and could not effectuate on
the satellite. Even with the best precautions, such radio communication failures can occur anytime in
ground-to-satellite communication. This stresses the importance to compute schedules that cover well
beyond the next ground station passes. In fact, this failure had little impact on the overall mission
since the previously valid schedule simply continued to execute. Although this may in general lead to
a substantial drift between the predicted battery behavior and real battery voltage, the Kalman filter
takes care of that and corrects the predictions over time when new telemetry measurements arrive.
A temporal overview of the full experiment horizon with the four uploaded flight plans is shown in
Fig. 9. Each time the satellite passes over the ground station and a fresh and improved plan is uploaded
to the satellite, the remaining parts of the previous plan are overwritten. Fig. 10 illustrates this behavior
for the whole experiment. At the top, all possible payload utilization windows and sunlight exposure
episodes are shown. Access windows that were actually scheduled by our tool are marked in blue, or

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 18/23



Deliverable D1.1:
Inventory of Practice: Resources

H
S
L
S
V
A
L

H
S
L
C
D
B

N
a
n
o
C
a
m

IS
L

A
D
S
-B

S
u
n

0
.5
5

0
.6
0

0
.6
5

0
.7
0

0
.7
5

0
.8
0

Av
ail

ab
le

Ch
ar
ge

[%
]

Bo
un

d
Ch

ar
ge

[%
]

10
.0
5.
06
:0
0

10
.0
5.
12
:0
0

10
.0
5.
18
:0
0

11
.0
5.
00
:0
0

11
.0
5.
06
:0
0

11
.0
5.
12
:0
0

11
.0
5.
18
:0
0

12
.0
5.
00
:0
0

−
2
0
0
00

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Lo
ad

[m
W

]

Fig
ur

e1
0:

Ta
sk
sa

nd
pr

ed
ict

ed
ba

tte
ry

be
ha

vio
ro

ft
he

re
ce

di
ng

-h
or

izo
n
sc
he

du
les

.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 19/23



Deliverable D1.1:
Inventory of Practice: Resources

10
.05

. 0
6:0

0

10
.05

. 1
2:0

0

10
.05

. 1
8:0

0

11
.05

. 0
0:0

0

11
.05

. 0
6:0

0

11
.05

. 1
2:0

0

11
.05

. 1
8:0

0

12
.05

. 0
0:0

0

0.6

0.7

0.8

0.9

1.0

Available Charge [%]
Battery Voltage [%]

Figure 11: GomX–4A battery voltage telemetry during the experiment.

gray if skipped. The three green lines mark the positions where new plans were uploaded (and the
dashed red line where the upload failed).
Predictions vs. Reality. The middle and bottom of the figure show the predicted evolution of the
battery with respect to the SoC of the KiBaM model and the load profile that is applied to the battery.
According to telemetry measurements, the initial SoC was assumed to be around 75%, and the model
predicted the SoC to decrease to 63% at the moment the second flight plan should take over. However,
this was not the case either because the true initial SoC was actually higher than expected or because
the model was too pessimistic concerning the payload energy utilization. As a result, the initial SoC
for the second plan was corrected upwards by the Kalman Filter by around 5%, allowing the second
flight plan to perform more activities, hence increasing the satellite’s productivity. For the next pass
90 minutes later, a third flight plan was computed. This time, the Kalman filter induced no correction
in either direction, meaning that the plan used the predicted model estimates unaltered to derive the
initial SoC. Similar to the second plan, the initial SoC of the fourth plan was again corrected upwards
by the Kalman filter.
The battery voltagemeasurements that were downlinked from the satellite and used in the Kalman filter
updates are shown in Fig. 11. The blue line again represents the evolution of the available charge of
the KiBaM model. The individual telemetry data points are depicted as purple hexagons, connected by
an orange line that linearly interpolates the given discrete set of measurements recorded. The battery
pack on board GomX–4A has a maximal voltage of 16.2V. The lowest allowable operational limit for
the battery is 14.8V. If the voltage falls below this nominal voltage limit, a safe-mode is triggered
on the satellite that disables nonessential payloads until the battery has recovered. According to the
engineers, a battery pack with 14.8V contains roughly 55% of energy. Therefore, in the plot, a voltage
of 14.8V is aligned with 55%.
Effect of Receding-Horizon. For the purpose of analyzing the overall effect of the receding-horizon
approach, a monolithic scheduling alternative was computed, using the same initial scenario setting as
the real experiment but long enough to cover the entire experiment horizon in one shot, thus without
considering any feedback from telemetry received during the experiment. The receding-horizon sched-
ules and the monolithic schedule are superimposed in Fig. 12. The payload utilization windows in the
upper half of the figure are now split into two parts, where the top part belongs to the receding-horizon
schedule, and the bottom part belongs to the single schedule. Payload windows that are chosen by the
tool to be executed only in the receding-horizon version but not in the single schedule are highlighted
in green, while windows that are only scheduled in the monolithic schedule are colored red.
The computed schedules differ in many places, but if one looks at the total task counts being scheduled,

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 20/23



Deliverable D1.1:
Inventory of Practice: Resources

H
S
L
S
V
A
L

H
S
L
C
D
B

N
a
n
o
C
a
m

IS
L

A
D
S
-B

S
u
n

10
.0
5.
06
:0
0

10
.0
5.
12
:0
0

10
.0
5.
18
:0
0

11
.0
5.
00
:0
0

11
.0
5.
06
:0
0

11
.0
5.
12
:0
0

11
.0
5.
18
:0
0

12
.0
5.
00
:0
0

0
.5
5

0
.6
0

0
.6
5

0
.7
0

0
.7
5

0
.8
0

Avail.Charge[%]

Re
ce

di
ng

Ho
riz

on
Si
ng

le
Sc

he
du

le

Fig
ur

e1
2:

Co
m
pa

ris
on

of
th
er

ec
ed

in
g-
ho

riz
on

sc
he

du
les

wi
th

am
on

ol
ith

ic
sc
he

du
le

co
ve

rin
gt

he
en

tir
ee

xp
er
im

en
th

or
izo

n.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 21/23



Deliverable D1.1:
Inventory of Practice: Resources

the quantitative difference is that the receding-horizon schedule can sustain one more HSL task and
six more ISL chunks than the single monolithic at the price of waiving two ADS-B opportunities. Note,
however, that from an energy budget perspective, HSL and ISL are much more power-demanding than
ADS-B (around one order of magnitude). These findings make sense since the Deep Battery model
factually added energy to the system twice in the receding-horizon setting, based on the telemetry re-
ceived. This demonstrates the importance of automated model learning techniques whenever working
with battery models based on some theoretical assumptions about the consumers.

6 Conclusion

The commercial exploitation of near-Earth space is on the spot with thousands of satellites being pre-
pared for launch. We have presented the nucleus of a fully automated satellite constellation manage-
ment framework with highly accurate and scalable power-aware scheduling at its core. The approach
is highly flexible in the way that it can transparently express components and related tasks of any
modern networked mission, with a configurable optimization goal. Always-safe and best-to-follow
receding-horizon schedules are delivered by it.
The tool chain has been integrated into the mission operations and control center at GomSpace, and
experimental evidence has been collected in which the GomX–4A satellite has been autonomously op-
erated.
While the space domain is particular in the sense that power infeed is (short- and medium-term) fore-
seeable, the underlying algorithmic technology is not restricted to the space context in any way. Indeed,
there is an ample spectrum of future applications for battery-aware scheduling in heterogeneous situ-
ations found for instance in light electric mobility, cleaning robots, drones, and so forth.

References

[1] AGI Systems Tool Kit (STK) v11.7. http://www.agi.com/products/stk/. Accessed: 2020-03-03.
[2] Jennifer Alvarez and Buddy Walls. “Constellations, clusters, and communication technology:

Expanding small satellite access to space”. In: 2016 IEEE Aerospace Conference. Mar. 2016, pp. 1–
11. doi: 10.1109/AERO.2016.7500896.

[3] ApexCharts. https://apexcharts.com/. Accessed: 2020-03-03.
[4] Amotz Bar-Noy et al. “A unified approach to approximating resource allocation and scheduling”.

In: J. ACM 48.5 (2001), pp. 1069–1090.
[5] Gerd Behrmann, KimGuldstrand Larsen, and Jacob Illum Rasmussen. “Optimal scheduling using

priced timed automata”. In: SIGMETRICS Performance Evaluation Review 32.4 (2005), pp. 34–40.
doi: 10.1145/1059816.1059823.

[6] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. “Priced Timed Automata:
Algorithms and Applications”. In: Formal Methods for Components and Objects, Third Interna-
tional Symposium, FMCO 2004, Leiden, The Netherlands, November 2 - 5, 2004, Revised Lectures.
Ed. by Frank S. de Boer et al. Vol. 3657. Lecture Notes in Computer Science. Springer, 2004,
pp. 162–182. doi: 10.1007/11561163_8.

[7] Morten Bisgaard et al. “Battery-aware scheduling in low orbit: The GomX-3 Case”. In: Formal
Asp. Comput. 31.2 (2019), pp. 261–285. doi: 10.1007/s00165-018-0458-2.

[8] Cesium. https://cesium.com/. Accessed: 2020-03-03.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 22/23

http://www.agi.com/products/stk/
https://doi.org/10.1109/AERO.2016.7500896
https://apexcharts.com/
https://doi.org/10.1145/1059816.1059823
https://doi.org/10.1007/11561163_8
https://doi.org/10.1007/s00165-018-0458-2
https://cesium.com/


Deliverable D1.1:
Inventory of Practice: Resources

[9] Suresh Chand, Vernon Ning Hsu, and Suresh P. Sethi. “Forecast, Solution, and Rolling Horizons
in Operations Management Problems: A Classified Bibliography”. In: Manufacturing & Service
Operations Management 4.1 (2002), pp. 25–43. doi: 10.1287/msom.4.1.25.287.

[10] NG De Bruijn, Ca van Ebbenhorst Tengbergen, and D Kruyswijk. “On the set of divisors of a
number”. In: Nieuw Arch. Wiskunde (2) 23 (1951), pp. 191–193.

[11] J. A. Fraire. “Introducing Contact Plan Designer: A Planning Tool for DTN Based Space Ter-
restrial Networks”. In: 6th International Conference on Space Mission Challenges for Information
Technologies (SMC-IT). Alcala de Henares, Spain, Sept. 2017.

[12] Juan A. Fraire et al. “Battery-Aware Contact Plan Design for LEO Satellite Constellations: The
Ulloriaq Case Study”. In: IEEE Global Communications Conference, GLOBECOM 2018, Abu Dhabi,
United Arab Emirates, December 9-13, 2018. 2018, pp. 1–7. doi: 10 . 1109 / GLOCOM . 2018 .
8647822.

[13] FreeFlyer v7.5. https://ai-solutions.com/freeflyer/. Accessed: 2020-03-03.
[14] Jerrold R Griggs. “Maximum antichains in the product of chains”. In: Order 1.1 (1984), pp. 21–

28.
[15] Holger Hermanns, Jan Krčál, and Gilles Nies. “How Is Your Satellite Doing? Battery Kinetics with

Recharging and Uncertainty”. In: LITES 4.1 (2017), 04:1–04:28. doi: 10.4230/LITES-v004-
i001-a004.

[16] Marijn R. Jongerden and Boudewijn R. Haverkort. “Which battery model to use?” In: IET Soft-
ware 3.6 (2009), pp. 445–457. doi: 10.1049/iet-sen.2009.0001.

[17] Joseph R. Kopacz, Roman Herschitz, and Jason Roney. “Small satellites an overview and as-
sessment”. In: Acta Astronautica 170 (2020), pp. 93–105. issn: 0094-5765. doi: 10.1016/j.
actaastro.2020.01.034.

[18] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a Nutshell”. In: Int. J. Softw.
Tools Technol. Transf. 1.1-2 (1997), pp. 134–152. doi: 10.1007/s100090050010.

[19] Creon Levit and William Marshall. “Improved orbit predictions using two-line elements”. In:
Advances in Space Research 47.7 (2011), pp. 1107–1115. issn: 0273-1177. doi: 10.1016/j.
asr.2010.10.017.

[20] NASA General Mission Analysis Tool (GMAT) (V. R2016a). https : / / software . nasa . gov /
software/GSC-17778-1. Accessed: 2020-03-03.

[21] Gilles Nies et al. “Mastering operational limitations of LEO satellites – The GomX-3 approach”.
In: Acta Astronautica 151 (2018), pp. 726–735. issn: 0094-5765. doi: 10.1016/j.actaastro.
2018.04.040.

[22] Orekit v10.1. https://www.orekit.org/. Accessed: 2020-03-03.
[23] Gregory Stock et al. “Managing Fleets of LEO Satellites: Nonlinear, Optimal, Efficient, Scal-

able, Usable, and Robust”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39.11 (2020),
pp. 3762–3773. doi: 10.1109/TCAD.2020.3012751.

[24] Gregory Stock et al. “On the Automation, Optimization, and In-Orbit Validation of Intelligent
Satellite Constellation Operations”. In: Proceedings of the AIAA/USU Conference on Small Satel-
lites. Ground Systems, SSC21-V-05. 2021. url: https://digitalcommons.usu.edu/smallsat/
2021/all2021/168/.

[25] Uppaal Cora. http://people.cs.aau.dk/~adavid/cora/. Accessed: 2020-06-17.
[26] David Vallado et al. “Revisiting spacetrack report #3”. In: AIAA/AAS Astrodynamics Specialist

Conference and Exhibit. 2006, p. 6753.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233. Page 23/23

https://doi.org/10.1287/msom.4.1.25.287
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.1109/GLOCOM.2018.8647822
https://ai-solutions.com/freeflyer/
https://doi.org/10.4230/LITES-v004-i001-a004
https://doi.org/10.4230/LITES-v004-i001-a004
https://doi.org/10.1049/iet-sen.2009.0001
https://doi.org/10.1016/j.actaastro.2020.01.034
https://doi.org/10.1016/j.actaastro.2020.01.034
https://doi.org/10.1007/s100090050010
https://doi.org/10.1016/j.asr.2010.10.017
https://doi.org/10.1016/j.asr.2010.10.017
https://software.nasa.gov/software/GSC-17778-1
https://software.nasa.gov/software/GSC-17778-1
https://doi.org/10.1016/j.actaastro.2018.04.040
https://doi.org/10.1016/j.actaastro.2018.04.040
https://www.orekit.org/
https://doi.org/10.1109/TCAD.2020.3012751
https://digitalcommons.usu.edu/smallsat/2021/all2021/168/
https://digitalcommons.usu.edu/smallsat/2021/all2021/168/
http://people.cs.aau.dk/~adavid/cora/

	Introduction
	Abstraction: From Space to Algorithmics
	Battery Models
	The Algorithmic Core of the Problem
	Dynamic Programming with Pruning

	Concretization: Computations Driving Space
	The GomX–4 Mission
	Architecture of the Tool Chain

	Evaluation on Recorded Telemetry
	Accuracy
	Efficiency
	Scalability
	Robustness

	Empirical Evaluation in Orbit
	Scenario Set-Up
	Evaluation

	Conclusion

